18.100A: Complete Lecture Notes

Lecture 13:
Limits of Functions

Continuous Functions

Remark 1. Continuous functions are those functions where tolerable changes to outputs accompany sufficiently small differences of inputs.

Limits of Functions

Definition 2 (Cluster Point)
Let $S \subset \mathbb{R} . x \in \mathbb{R}$ is a cluster point of S if $\forall \delta>0,(x-\delta, x+\delta) \cap S \backslash\{x\} \neq \emptyset$.

Let's look at some examples.

1. $S=\{1 / n \mid n \in \mathbb{N}\}$. Here, 0 is a clusterpoint of S.
2. $S=(0,1)$. The set of cluster points of S is $[0,1]$.
3. $S=\mathbb{Q}$. The set of cluster points of S is \mathbb{R}.
4. $S=\{0\}$. There are no cluster points of S.
5. $S=\mathbb{Z}$. There are no cluster points of S.

Theorem 3

Let $S \subset \mathbb{R}$. Then, x is a cluster point of S if and only if there exists a sequence $\left\{x_{n}\right\}$ of elements in $S \backslash\{x\}$ such that $x_{n} \rightarrow x$.

Definition 4 (Function Convergence)

Let $S \subset \mathbb{R}$, let c be a cluster point of S, and $f: S \rightarrow \mathbb{R}$. We say that $f(x)$ converges to $L \in \mathbb{R}$ at c if $\forall \epsilon>0$ $\exists \delta>0$ such that if $x \in S$ and $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon$.

Notation 5

Notationally, we may write $f(x) \rightarrow L$ as $x \rightarrow c$, or $\lim _{x \rightarrow c} f(x)=L$.

Theorem 6

Let c be a cluster point of $S \subset \mathbb{R}$, and let $f: S \rightarrow \mathbb{R}$. If $f(x) \rightarrow L_{1}$ and $f(x) \rightarrow L_{2}$ as $x \rightarrow c$, then $L_{1}=L_{2}$.

Proof: We will show $\forall \epsilon>0,\left|L_{1}-L_{2}\right|<\epsilon$. Let $\epsilon>0$. Then, since $f(x) \rightarrow L_{1}$ and $f(x) \rightarrow L_{2}, \exists \delta_{1}$ such that if $x \in S$ and $0<|x-c|<\delta_{1}$ then

$$
\left|f(x)-L_{1}\right|<\epsilon / 2
$$

and $\exists \delta_{2}>0$ such that if $x \in S$ and $0<|x-c|<\delta_{2}$, then

$$
\left|f(x)-L_{2}\right|<\epsilon / 2
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$. Then, since c is a cluster point of $S, \exists x_{0} \in S$ such that

$$
0<\left|x_{0}-c\right|<\delta \Longrightarrow\left|L_{1}-L_{2}\right|=\left|L_{1}-f\left(x_{0}\right)+f\left(x_{0}\right)+L_{2}\right| \leq\left|L_{1}-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-L_{2}\right|<\epsilon
$$

Let's see some examples of limits of functions.

Example 7

Let $f(x)=a x+b$. Then, for all $c \in \mathbb{R}, \lim _{x \rightarrow c} f(x)=a c+b$.

Proof: Let $\epsilon>0$. Choose $\delta=\frac{\epsilon}{1+|a|}$. Then, if $x \in \mathbb{R}$ and $0<|x-c|<\delta$, then

$$
\begin{aligned}
|f(x)-(a c+b)| & =|a(x-c)| \\
& =|a||x-c| \\
& <|a| \delta \\
& =\frac{|a|}{1+|a|} \epsilon<\epsilon .
\end{aligned}
$$

Example 8

Let $f(x)=\sqrt{x}$. Then, $\forall c>0, \lim _{x \rightarrow c} f(x)=\sqrt{c}$.

Proof: Let $\epsilon>0$. Choose $\delta=\epsilon \sqrt{c}$. Then, if $x>0$ and $0<|x-c|<\delta$, then

$$
\begin{aligned}
|f(x)-\sqrt{c}| & =|\sqrt{x}-\sqrt{c}| \\
& =\left|\frac{(\sqrt{x}-\sqrt{c})(\sqrt{x}+\sqrt{c})}{\sqrt{x}+\sqrt{c}}\right| \\
& =\frac{|x-c|}{\sqrt{x}+\sqrt{c}} \\
& \leq \frac{|x-c|}{\sqrt{c}} \\
& <\frac{\delta}{\sqrt{c}}=\epsilon
\end{aligned}
$$

Example 9

Let $f(x)=\left\{\begin{array}{ll}1 & x \neq 0 \\ 2 & x=0\end{array}\right.$. Then, $\lim _{x \rightarrow 0} f(x)=1$. Notably, $\lim _{x \rightarrow 0} f(x) \neq f(0)$!

Proof: Let $\epsilon>0$ and choose $\delta=1$. Then, if $0<|x-0|<1$ then $x \neq 0 \Longrightarrow$

$$
|f(x)-1|=|1-1|=0<\epsilon
$$

Question 10. How do limits of functions relate to limits of sequences?

Theorem 11

Let $S \subset \mathbb{R}, c$ a cluster point of S, and let $f: S \rightarrow \mathbb{R}$. Then, the following are equivalent:

1. $\lim _{x \rightarrow c} f(x)=L$ and
2. for every sequence $\left\{x_{n}\right\}$ in $S \backslash\{c\}$ such that $x_{n} \rightarrow c$, we have $f\left(x_{n}\right)=L$.

Proof: (1. \Longrightarrow 2.): Suppose $\lim _{x \rightarrow c} f(x)=L$. Let $\left\{x_{n}\right\}$ be a sequence in $S \backslash\{c\}$ such that $x_{n} \rightarrow c$. We want to show that $f\left(x_{n}\right) \rightarrow L$. Let $\epsilon>0$. Given $\lim _{x \rightarrow c} f\left(x_{n}\right)=L, \exists \delta>0$ such that if $x \in S$ and $0<|x-c|<\delta$ then $|f(x)-L|<\epsilon$. Since $x_{n} \rightarrow c, \exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}, 0<\left|x_{n}-c\right|<\delta$.

Choose $M=M_{0}$. Then, $\forall n \geq M$, if $0<\left|x_{n}-c\right|<\delta$ then $\left|f\left(x_{n}\right)-L\right|<\epsilon$. Thus, $f\left(x_{n}\right) \rightarrow L$.
$\left(2 . \Longleftarrow 1\right.$.): Suppose 2 . holds, and assume for the sake of contradiction that 1) is false. Then, $\exists \epsilon_{0}>0$ such that $\forall \delta>0, \exists x \in S$ such that

$$
0<|x-c|<\delta \text { and }|f(x)-L| \geq \epsilon_{0}
$$

Then, $\forall n \in \mathbb{N}, \exists x_{n} \in S$ such that $0<\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$. By the Squeeze Theorem applied to

$$
0<\left|x_{n}-c\right|<\frac{1}{n}
$$

$x_{n} \rightarrow c$. Then, by 2 .,

$$
0=\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}
$$

which is a contradiction.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

