18.100A: Complete Lecture Notes

Lecture 13:

Limits of Functions

Continuous Functions

Remark 1. Continuous functions are those functions where <u>tolerable</u> changes to <u>outputs</u> accompany sufficiently <u>small</u> differences of inputs.

Limits of Functions

Definition 2 (Cluster Point) Let $S \subset \mathbb{R}$. $x \in \mathbb{R}$ is a cluster point of S if $\forall \delta > 0$, $(x - \delta, x + \delta) \cap S \setminus \{x\} \neq \emptyset$.

Let's look at some examples.

- 1. $S = \{1/n \mid n \in \mathbb{N}\}$. Here, 0 is a clusterpoint of S.
- 2. S = (0, 1). The set of cluster points of S is [0, 1].
- 3. $S = \mathbb{Q}$. The set of cluster points of S is \mathbb{R} .
- 4. $S = \{0\}$. There are no cluster points of S.
- 5. $S = \mathbb{Z}$. There are no cluster points of S.

Theorem 3

Let $S \subset \mathbb{R}$. Then, x is a cluster point of S if and only if there exists a sequence $\{x_n\}$ of elements in $S \setminus \{x\}$ such that $x_n \to x$.

Definition 4 (Function Convergence)

Let $S \subset \mathbb{R}$, let c be a cluster point of S, and $f: S \to \mathbb{R}$. We say that f(x) converges to $L \in \mathbb{R}$ at c if $\forall \epsilon > 0$ $\exists \delta > 0$ such that if $x \in S$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Notation 5

Notationally, we may write $f(x) \to L$ as $x \to c$, or $\lim_{x\to c} f(x) = L$.

Theorem 6

Let c be a cluster point of $S \subset \mathbb{R}$, and let $f: S \to \mathbb{R}$. If $f(x) \to L_1$ and $f(x) \to L_2$ as $x \to c$, then $L_1 = L_2$.

Proof: We will show $\forall \epsilon > 0$, $|L_1 - L_2| < \epsilon$. Let $\epsilon > 0$. Then, since $f(x) \to L_1$ and $f(x) \to L_2$, $\exists \delta_1$ such that if $x \in S$ and $0 < |x - c| < \delta_1$ then

$$|f(x) - L_1| < \epsilon/2$$

and $\exists \delta_2 > 0$ such that if $x \in S$ and $0 < |x - c| < \delta_2$, then

$$|f(x) - L_2| < \epsilon/2.$$

Let $\delta = \min\{\delta_1, \delta_2\} > 0$. Then, since c is a cluster point of $S, \exists x_0 \in S$ such that

$$0 < |x_0 - c| < \delta \implies |L_1 - L_2| = |L_1 - f(x_0) + f(x_0) + L_2| \le |L_1 - f(x_0)| + |f(x_0) - L_2| < \epsilon.$$

Let's see some examples of limits of functions.

Example 7 Let f(x) = ax + b. Then, for all $c \in \mathbb{R}$, $\lim_{x \to c} f(x) = ac + b$.

Proof: Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{1+|a|}$. Then, if $x \in \mathbb{R}$ and $0 < |x - c| < \delta$, then

$$\begin{split} |f(x)-(ac+b)| &= |a(x-c)| \\ &= |a||x-c| \\ &< |a|\delta \\ &= \frac{|a|}{1+|a|}\epsilon < \epsilon. \end{split}$$

Example 8 Let $f(x) = \sqrt{x}$. Then, $\forall c > 0$, $\lim_{x \to c} f(x) = \sqrt{c}$.

Proof: Let $\epsilon > 0$. Choose $\delta = \epsilon \sqrt{c}$. Then, if x > 0 and $0 < |x - c| < \delta$, then

$$|f(x) - \sqrt{c}| = |\sqrt{x} - \sqrt{c}|$$

$$= \left| \frac{(\sqrt{x} - \sqrt{c})(\sqrt{x} + \sqrt{c})}{\sqrt{x} + \sqrt{c}} \right|$$

$$= \frac{|x - c|}{\sqrt{x} + \sqrt{c}}$$

$$\leq \frac{|x - c|}{\sqrt{c}}$$

$$< \frac{\delta}{\sqrt{c}} = \epsilon.$$

Example 9
Let
$$f(x) = \begin{cases} 1 & x \neq 0 \\ 2 & x = 0 \end{cases}$$
. Then, $\lim_{x \to 0} f(x) = 1$. Notably, $\lim_{x \to 0} f(x) \neq f(0)$!

Proof: Let $\epsilon > 0$ and choose $\delta = 1$. Then, if 0 < |x - 0| < 1 then $x \neq 0 \implies$

$$|f(x) - 1| = |1 - 1| = 0 < \epsilon.$$

Question 10. How do limits of functions relate to limits of sequences?

Theorem 11

Let $S \subset \mathbb{R}$, c a cluster point of S, and let $f: S \to \mathbb{R}$. Then, the following are equivalent:

- 1. $\lim_{x\to c} f(x) = L$ and
- 2. for every sequence $\{x_n\}$ in $S \setminus \{c\}$ such that $x_n \to c$, we have $f(x_n) = L$.

Proof: (1. \implies 2.): Suppose $\lim_{x\to c} f(x) = L$. Let $\{x_n\}$ be a sequence in $S \setminus \{c\}$ such that $x_n \to c$. We want to show that $f(x_n) \to L$. Let $\epsilon > 0$. Given $\lim_{x\to c} f(x_n) = L$, $\exists \delta > 0$ such that if $x \in S$ and $0 < |x - c| < \delta$ then $|f(x) - L| < \epsilon$. Since $x_n \to c$, $\exists M_0 \in \mathbb{N}$ such that $\forall n \ge M_0$, $0 < |x_n - c| < \delta$.

Choose $M = M_0$. Then, $\forall n \ge M$, if $0 < |x_n - c| < \delta$ then $|f(x_n) - L| < \epsilon$. Thus, $f(x_n) \to L$.

(2. \leftarrow 1.): Suppose 2. holds, and assume for the sake of contradiction that 1) is false. Then, $\exists \epsilon_0 > 0$ such that $\forall \delta > 0, \exists x \in S$ such that

$$0 < |x - c| < \delta$$
 and $|f(x) - L| \ge \epsilon_0$.

Then, $\forall n \in \mathbb{N}, \exists x_n \in S$ such that $0 < |x_n - c| < \frac{1}{n}$ and $|f(x_n) - L| \ge \epsilon_0$. By the Squeeze Theorem applied to

$$0 < |x_n - c| < \frac{1}{n},$$

 $x_n \to c$. Then, by 2.,

$$0 = \lim_{n \to \infty} |f(x_n) - L| \ge \epsilon_0$$

which is a contradiction.

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.