18.100A: Complete Lecture Notes

Lecture 15:
The Continuity of Sine and Cosine
and the Many Discontinuities of Dirichlet's Function

Theorem 1

Let $S \subset \mathbb{R}, c \in S$, and $f: S \rightarrow \mathbb{R}$. Then,

1. if c is not a cluster point of f, then f is continuous at c.
2. if c is a cluster point of S, then f is continuous at c if and only if $\lim _{x \rightarrow c} f(x)=f(c)$.
3. f is continuous at c if and only if for every sequence $\left\{x_{n}\right\}$ of elements of S such that $x_{n} \rightarrow c$, we have $f\left(x_{n}\right) \rightarrow f(c)$.

Proof:

1. Let $\epsilon>0$. Since c is not a cluster point of $S, \exists \delta_{0}>0$ such that $\left(c-\delta_{0}, c+\delta_{0}\right) \cap S=\{c\}$. Choose $\delta=\delta_{0}$. If $x \in S$ and $|x-c|<\delta \Longrightarrow x=c \Longrightarrow|f(x)-f(c)|=0<\epsilon$. Therefore, f is continuous at c.
2. This part of the theorem is left as an exercise (or read the short proof in the book).
3. (\Longrightarrow) Suppose f is continuous at c. Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow c$. Let $\epsilon>0$. Since f is continuous at $c, \exists \delta>0$ such that if $x \in S$ and $|x-c|<\delta$ then $|f(x)-f(c)|<\epsilon$. Since $x_{n} \rightarrow c, \exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0},\left|x_{n}-c\right|<\delta$. Choose $M=M_{0}$. Then, $\forall n \geq M$,

$$
\left|x_{n}-c\right|<\delta \Longrightarrow\left|f\left(x_{n}\right)-f(c)\right|<\epsilon .
$$

Thus, $f\left(x_{n}\right) \rightarrow f(c)$.
(\Longleftarrow) Suppose that for every sequence $\left\{x_{n}\right\}$ of elements of S such that $x_{n} \rightarrow c$, we have that $f\left(x_{n}\right) \rightarrow f(c)$. We will work towards a contradiction. Suppose $f(x)$ is not continuous at c. Then, $\exists \epsilon_{0}$ such that $\forall \delta>0$ $\exists x \in S$ such that $|x-c|<\delta$ and $|f(x)-f(c)| \geq \epsilon_{0}$.
Thus, $\forall n \in \mathbb{N}, \exists x_{n} \in S$ such that $\left|x_{n}-c\right|<\frac{1}{n}$ and

$$
\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0} .
$$

Thus, by the Squeeze Theorem, $\left|x_{n}-c\right| \rightarrow 0 \Longrightarrow x_{n} \rightarrow c$. Therefore,

$$
0=\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}
$$

which is a contradiction.

Theorem 2

The functions $f(x)=\sin x$ and $g(x)=\cos x$ are continuous functions on \mathbb{R}.

Proof: From their definitions in terms of the unit circle, we have that $\sin ^{2}(x)+\cos ^{2}(x)=1$. Also note the following:

1. $\forall x \in \mathbb{R},|\sin x| \leq 1$ and $|\cos x| \leq 1$
2. $\forall x \in \mathbb{R},|\sin x| \leq|x|$
3. The angle formulae:

$$
\sin (a+b)=\cos (a) \sin (b)+\sin (a) \cos (b) \quad \text { and } \quad \sin (a)-\sin (b)=2 \sin \left(\frac{a-b}{2}\right) \cos \left(\frac{a+b}{2}\right) .
$$

We now show that $\sin x$ is continuous on \mathbb{R}. Let $\epsilon>0$. Choose $\delta=\epsilon$. Then, if $|x-c|<\delta$, then

$$
|\sin x-\sin c|=2\left|\sin \frac{x-c}{2} \cos \frac{x+c}{2}\right| \leq 2\left|\sin \frac{x-c}{2}\right| \leq 2 \frac{|x-c|}{2}=|x-c|<\delta=\epsilon
$$

Therefore, $\sin x$ is continuous on \mathbb{R}. We now show that $\cos x$ is continuous. Recall that $\forall x \in \mathbb{R}, \cos x=\sin (x+\pi / 2)$. Let $c \in \mathbb{R}$ and let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow c$. Then, $x_{n}+\pi / 2 \rightarrow c+\pi / 2$. Since $\sin x$ is continuous on \mathbb{R},

$$
\lim _{n \rightarrow \infty} \cos x_{n}=\lim _{n \rightarrow \infty} \sin \left(x_{n}+\frac{\pi}{2}\right)=\sin \left(c+\frac{\pi}{2}\right)=\cos c
$$

Therefore, $\cos x$ is continuous on \mathbb{R}.

Theorem 3

Let f be a polynomial, in other words let f be of the form

$$
f(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}
$$

Then, f is continuous on all of \mathbb{R}.

Proof: Let $c \in \mathbb{R}$ and let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow c$. Then, by the limit theorem for sequences,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(x_{n}\right) & =\lim _{n \rightarrow \infty}\left(a_{d} x^{d}+\cdots+a_{1} x+a_{0}\right) \\
& =a_{d}\left(\lim _{n \rightarrow \infty} x_{n}\right)^{d}+\cdots+a_{1}\left(\lim _{n \rightarrow \infty} x_{n}\right)+a_{0} \\
& =a_{d} c^{d}+\cdots+a_{1} c+a_{0} \\
& =f(c) .
\end{aligned}
$$

Thus, f is continuous at c for all $c \in \mathbb{R}$.

Theorem 4

If $f: S \rightarrow \mathbb{R}, g: S \rightarrow \mathbb{R}$ are continuous at $c \in S$, then

1. $f+g$ is continuous at c,
2. $f \cdot g$ is continuous at c,
3. and if $\forall x \in S g(x) \neq 0$, then $\frac{f}{g}$ is continuous at c.

Proof: These proofs are left to the reader.

Theorem 5

Let $A, B \subset \mathbb{R}, f: B \rightarrow \mathbb{R}, g: A \rightarrow B$. Then, if g is continuous at c and f is continuous at $g(c)$, then $f \circ g$ is continuous at c.

Proof: Suppose $x_{n} \rightarrow c$. Then, $g\left(x_{n}\right) \rightarrow g(c)$, and thus

$$
f\left(g\left(x_{n}\right)\right) \rightarrow f(g(c))
$$

Example 6

These theorems allow us to say that some functions are continuous without a huge $\epsilon-\delta$ proof:
i) $\frac{1}{x^{2}}$ is continuous on $(0, \infty)$. This follows as $g(x)=x^{2}$ is continuous on $(0, \infty)$ and thus $\frac{1}{g(x)}=1 / x^{2}$ is continuous on $(0, \infty)$.
ii) $\left(\cos \frac{1}{x^{2}}\right)^{2}$ is continuous on $(0, \infty)$. This follows as $\cos x$ is continuous on \mathbb{R}, and thus $g(x)=\cos \left(1 / x^{2}\right)$ is continuous on $(0, \infty)$. Furthermore, since $f(x)=x^{2}$ is continuous on $\mathbb{R},(f \circ g)(x)=\left(\cos 1 / x^{2}\right)^{2}$ is continuous on $(0, \infty)$.

Question 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Does there exists a point $c \in \mathbb{R}$ such that f is continuous at c ?

Theorem 8

The function

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

is not continuous on all of \mathbb{R}. This function is called the Dirichlet function.

Proof: We have two cases: $c \in \mathbb{Q}$ or $c \notin \mathbb{Q}$.

1. $c \in \mathbb{Q}$. For each $n \in \mathbb{N}, \exists x_{n} \notin \mathbb{Q}$ such that $c<x_{n}<c+1 / n$, and thus $x_{n} \rightarrow c$ but $f\left(x_{n}\right)=1$ for all n so

$$
1=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)=0
$$

2. $c \notin \mathbb{Q}$. Similarly, for each $n \in \mathbb{N}, \exists x_{n} \in \mathbb{Q}$ such that $c<x_{n}<c+1 / n$, and thus $x_{n} \rightarrow c$ but $f\left(x_{n}\right)=0$ for all n so

$$
0=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)=1
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

