18.100A: Complete Lecture Notes

Lecture 17:
Uniform Continuity and the Definition of the Derivative

Uniform Continuity

Recall 1

Recall the definition of continuity: $f: S \rightarrow \mathbb{R}$ is continuous on S if $\forall c \in S$ and $\forall \epsilon>0, \exists \delta=\delta(\epsilon, c)>0$ such that $\forall x \in S,|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\epsilon$.

Here, $\delta(\epsilon, c)$ denotes the fact that δ can depend on ϵ and c.

Example 2

Consider the function $f(x)=\frac{1}{x} . f$ is continuous on $(0,1)$.

Proof: Let $\epsilon>0$. Choose $\delta=\min \left\{\frac{c}{2}, \frac{c^{2}}{2} \epsilon\right\}$. Suppose $|x-c|<\delta$. Then, $|x-c|<\frac{c}{2} \Longrightarrow|x|>c-|x-c|>\frac{c}{2}$. Thus, $\frac{1}{|x|}<\frac{2}{c}$. Therefore,

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{c}\right| & =\frac{|x-c|}{|x c|} \\
& <\frac{\delta}{|x||c|} \\
& <\frac{2}{c^{2}} \delta \\
& \leq \frac{2}{c^{2}} \frac{c^{2} \epsilon}{2}=\epsilon
\end{aligned}
$$

As shown in the previous example. δ depended on both ϵ and c.
Definition 3 (Uniformly Continuous)
Let $f: S \rightarrow \mathbb{R}$. Then, f is uniformly continuous on S if $\forall \epsilon>0, \exists \delta=\delta(\epsilon)>0$ such that $\forall x, c \in S$,

$$
|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\epsilon
$$

Remark 4. Thus, in the definition of uniform continuity, δ only depends on ϵ !

Example 5

The function $f(x)=x^{2}$ is uniformly continuous on $[0,1]$.

Proof: Let $\epsilon>0$. Choose $\delta=\frac{\epsilon}{2}$. Then, if $x, c \in[0,1]$ then $|x-c|<\delta$ implies that

$$
\left|x^{2}-c^{2}\right|=|x+c||x-c| \leq 2|x-c|<2 \delta=\epsilon
$$

However, there are of course continuous functions that are not uniformly continuous. For example, we will show that $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$, but first we consider the negation of the definition.

Negation 6 (Not Uniformly Continuous)

Let $f: S \rightarrow \mathbb{R}$. Then, f is not uniformly continuous on S if $\exists \epsilon_{0}>0, \forall \delta>0$ such that $\exists x, c \in S$ with

$$
|x-c|<\delta \text { and }|f(x)-f(c)| \geq \epsilon_{0}
$$

Proof: Choose $\epsilon_{0}=2$ (in fact, any $\epsilon_{0}>0$ will show that $\frac{1}{x}$ is not uniformly continuous on $(0,1)$). Then, let $\delta>0$. Choose $c=\min \left\{\delta, \frac{1}{2}\right\}$ and $x=\frac{c}{2}$. Then, $|x-c|=\frac{c}{2} \leq \frac{\delta}{2}<\delta$ and

$$
\left|\frac{1}{x}-\frac{1}{c}\right|=\left|\frac{2}{c}-\frac{1}{c}\right|=\frac{1}{c} \geq \frac{1}{\frac{1}{2}}=2
$$

Theorem 7

Let $f:[a, b] \rightarrow \mathbb{R}$. Then, f is continuous if and only if f is uniformly continuous.

Proof: (\Longleftarrow) This direction is left as an exercise to the reader.
(\Longrightarrow) Suppose f is continuous and assume for the sake of contradiction that f is not uniformly continuous. Then, $\exists \epsilon_{0}>0$ such that for all $n \in \mathbb{N}, \exists x_{n}, c_{n} \in[a, b]$ such that

$$
\left|x_{n}-c_{n}\right|<\frac{1}{n} \text { and }\left|f\left(x_{n}\right)-f\left(c_{n}\right)\right|>\epsilon_{0}
$$

By Bolzano-Weierstrass, \exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and $x \in[a, b]$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$. Similarly, by Bolzano-Weierstrass, \exists a subsequence $\left\{c_{n_{k}}\right\}$ of $\left\{c_{n}\right\}$ and $c \in[a, b]$ such that $\lim _{k \rightarrow \infty} c_{n_{k}}=c$. Note that subsequence $\left\{x_{n_{k_{j}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ satisfies $\lim _{j \rightarrow \infty} x_{n_{k_{j}}}=x$.

Then,

$$
|x-c|=\lim _{j \rightarrow \infty}\left|x_{n_{k_{j}}}-c_{n_{k_{j}}}\right| \leq \lim _{j \rightarrow \infty} \frac{1}{n_{k_{j}}}-0
$$

Thus, $x=c$. But, since f is continuous at c,

$$
0=|f(c)-f(c)|=\lim _{j \rightarrow \infty}\left|f\left(x_{n_{k_{j}}}\right)-f\left(c_{n_{k_{j}}}\right)\right| \geq \epsilon_{0} .
$$

This is a contradiction.

Derivative

Definition 8

Let I be an interval, let $f: I \rightarrow \mathbb{R}$, and let $c \in I$. We say that f is differentiable at c if the limit

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

exists.

Notation 9

If f is differentiable at c, we write

$$
f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} .
$$

Furthermore, if f is differentiable at every $c \in I$, we write f^{\prime} or $\frac{\mathrm{d} f}{\mathrm{~d} x}$ for the function $f^{\prime}(x)$.

Example 10

Consider the function $f(x)=a x+b$. Then, for all $c \in \mathbb{R}, f^{\prime}(c)=a$.

Proof: This follows as

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{a x+b-(a c+b)}{x-c}=a \lim _{x \rightarrow c} \frac{x-c}{x-c}=\lim _{x \rightarrow c} a=a
$$

Example 11 (The Power Rule)
For all $n \in \mathbb{N}$, if $f(x)=\alpha x^{n}$, then for all $c \in \mathbb{R}$,

$$
f^{\prime}(c)=\alpha n c^{n-1}
$$

Proof: We note that for all $n \in \mathbb{N}$,

$$
(x-c) \sum_{j=0}^{n-1} x^{n-1-j} c^{j}=\sum_{j=0}^{n-1} x^{n-j} c^{j}-\sum_{j=0}^{n-1} x^{n-1-j} c^{j+1}
$$

Letting $\ell=j+1$, we obtain

$$
\begin{aligned}
(x-c) \sum_{j=0}^{n-1} x^{n-1-j} c^{j} & =\sum_{j=0}^{n-1} x^{n-j} c^{j}-\sum_{\ell=1}^{n} x^{n-\ell} c^{\ell} \\
& =x^{n-0} c^{0}-x^{n-n} c^{n} \\
& =x^{n}-c^{n}
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow c} \frac{\alpha x^{n}-\alpha c^{n}}{x-c}=\alpha \lim _{x \rightarrow c} \sum_{j=0}^{n-1} x^{n-1-j} c^{j}=\alpha \sum_{j=0}^{n-1} c^{n-1-j} c^{j}=\alpha n c^{n-1}
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

