18.100A: Complete Lecture Notes

Lecture 18:

Weierstrass's Example of a Continuous and Nowhere Differentiable Function

Theorem 1 If $f: I \to \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c.

Proof: Since every point of I is a cluster point of I, f is continuous at $c \in I \iff \lim_{x \to c} f(x) = f(c)$. Now,

$$\lim_{x \to c} f(x) = \lim_{x \to c} (f(x) - f(c) + f(c))$$
$$= \lim_{x \to c} \left((x - c) \frac{f(x) - f(c)}{x - c} + f(c) \right)$$
$$= 0 \cdot f'(c) + f(c) = f(c).$$

Question 2. Is the converse true? Does f being continuous imply that f is differentiable?

The answer, is **no**.

Example 3 Let f(x) = |x|. Then, f is not differentiable at 0.

Proof: We find a sequence $x_n \to 0$ such that

$$\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} \quad \text{does not exist.}$$

Let $x_n = \frac{(-1)^n}{n}$. Then, $\lim_{n \to \infty} x_n = 0$. However,

$$\frac{f(x_n) - f(0)}{x_n - 0} = \frac{|(-1)^n / n|}{(-1)^n / n} = (-1)^n$$

and $\lim_{n\to\infty} (-1)^n$ does not exist.

Question 4. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, then does there exist a $c \in \mathbb{R}$ such that f is differentiable at c?

The answer is again **no**! This was shown by Weierstrass, aka the Godfather.

The basic idea is to build a continuous function that is a sum of highly oscillating functions.

Remark 5. Note that we number the upcoming theorems so we may reference them a bit later in this lecture.

Theorem 6 (Theorem I)

We will show the following

1. $\forall x, y \in \mathbb{R}, |\cos x - \cos y| \le |x - y|.$

2. Let $c \in \mathbb{R}$. Then, for all $K \in \mathbb{N}$, $\exists y \in (c + \pi/K, c + 3\pi/K)$ such that

$$\cos(Kc) - \cos(Ky) \ge 1.$$

Proof:

1. In the proof of continuity of $\sin x$, we showed that $\forall x, y \in \mathbb{R}$, $|\sin x - \sin y| \le |x - y|$. Thus,

 $|\cos x - \cos y| = |\sin(x + \pi/2) - \sin(y + \pi/2)| \le |x - y|.$

2. The function $f(x) = \cos(Kx)$ is a $\frac{2\pi}{K}$ -periodic function. In particular, $([-1, 1] \setminus \cos(Kc)) \subset f(c + \pi/K, c + 3\pi/K)$.

If $\cos Kc \ge 0$, then we choose y such that $\cos(Ky) = -1$. If $\cos(Kc) < 0$, then we choose y such that $\cos(Ky) = 1$. This completes the proof

Theorem 7 (Theorem II) For all $a, b, c \in \mathbb{R}$,

$$|a + b + c| \ge |a| - |b| - |c|.$$

Proof: We apply the Triangle Inequality twice:

 $|a| = |a + b + b + (-b) + (-c)| \le |a + b + b| + |b + c| \le |a + b + c| + |b| + |c|.$

Theorem 8 (Theorem III)

We will show the following:

- 1. $\forall x \in \mathbb{R}, \sum_{k=0}^{\infty} \frac{\cos(160^k x)}{4^k}$ is absolutely convergent.
- 2. The function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sum_{k=0}^{\infty} \frac{\cos(160^k x)}{4^k}$ is bounded and continuous.

Proof:

1. $\forall k, \left| \frac{\cos(160^k x)}{4^k} \right| \le 4^{-k}$. Hence, by the Comparison Test,

$$\sum_{k=0}^{\infty} \left| \frac{\cos(160^k x)}{4^k} \right| \quad \text{converges.}$$

2. For all $x \in \mathbb{R}$, $|f(x)| \leq \sum_{k=0}^{\infty} \frac{|\cos(160^k x)|}{4^k} \leq \sum 4^{-k} = \frac{4}{3}$. Therefore, f is bounded.

We now show that f is continuous over \mathbb{R} . Suppose $c \in \mathbb{R}$ and $x_n \to c$. Note that $\{|f(x_n) - f(c)|\}_n$ is bounded, and thus

$$\lim_{n \to \infty} |f(x_n) - f(c)| = 0 \iff \limsup_{n \to \infty} |f(x_n) - f(c)| = 0.$$

We claim that for all $\epsilon > 0$, $\limsup_{n \to \infty} |f(x_n) - f(c)| \le \epsilon$. Let $\epsilon > 0$. Choose M_0 such that $\sum_{k=M_0+1}^{\infty} 4^{-k} < \frac{\epsilon}{2}$. Then,

$$\begin{split} \limsup_{n \to \infty} |f(x_n) - f(c)| &= \limsup_n \left| \sum_{k=0}^{M_0} \frac{\cos(160^k x_n)}{4^k} - \frac{\cos(160^k c)}{4^k} + \sum_{k=M_0+1}^{\infty} \frac{\cos(160^k x_n)}{4^k} - \frac{\cos(160^k c)}{4^k} \right| \\ &\leq \limsup_n \sum_{k=0}^{M_0} 4^{-k} |\cos(160^k x_n) - \cos(160^k c)| + \sum_{k=M_0+1}^{\infty} 4^{-k} (|\cos(160^k x_n)| + |\cos(160^k c)|) \\ &\leq \limsup_n \left(\sum_{k=0}^{M_0} 40^k \right) |x_n - c| + \epsilon = \epsilon. \end{split}$$

Theorem 9 (Weierstrass) The function $f(x) = \sum_{k=0}^{\infty} \frac{\cos(160^k x)}{4^k}$ is nowhere differentiable.

Proof: Let $c \in \mathbb{R}$. We will construct a sequence $x_n \to c$ such that $\left\{\frac{f(x_n)-f(c)}{x_n-c}\right\}_n$ is unbounded. By Theorem I 2), $\forall n \in \mathbb{N}$ there exists an x_n such that **a**) $\frac{\pi}{160^n} < x_n - c < \frac{3\pi}{160^n}$ and **b**) $|\cos(160^n c) - \cos(160^n x_n)| \ge 1$. By **a**), $x_n \neq 0 \forall n$ and $|x_n - c| \le \frac{3\pi}{160^n} \to 0$. Let $f_k(x) = \frac{\cos(160^k x)}{4^k}$ so $f(x) = \sum f_k(x)$. Let $n \in \mathbb{N}$. Thus, denote

$$f(c) - f(x_n) = f_n(c) - f_n(x_n) + \sum_{k=0}^{n-1} (f_k(c) - f_k(x_n)) + \sum_{k=n}^{\infty} (f_k(c) - f_k(x_n))$$

:= $a_n + b_n + c_n$.

Therefore, by Theorem II,

$$|f(c) - f(x_n)| \ge |a_n| - |b_n| - |c_n|.$$

By **b**), $|a_n| = 4^{-n} |\cos(160^k x_n) - \cos(160^k c)| \ge 4^{-n}$. Furthermore, we have

$$|b_n| \le \sum_{k=0}^{n-1} 4^{-k} |\cos(160^k c) - \cos(160^k x_n)| \le \sum_{k=0}^{n-1} 4^{-k} \cdot 160^k |x_n - c| \le \frac{3\pi}{160^n} \sum_{k=0}^{n-1} 40^k = \frac{3\pi}{160^n} \cdot \frac{40^n - 1}{39} \le \frac{4^{-n+1}}{13} \cdot \frac{40^n - 1}{13} \le \frac{4^{-n+1}}{13} \cdot \frac{40^n - 1}{13} \le \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{-n+1}}{13} \cdot \frac{4^{-n+1}}{13} = \frac{4^{$$

Finally, we have

$$|c_n| \le \sum_{k=n+1}^{\infty} 4^{-k} (|\cos(160^k c)| + |\cos(160^k x_n)|) \le 2\sum_{k=n+1}^{\infty} 4^{-k} = 2 \cdot 4^{-n-1} \cdot \frac{4}{3} = 4^{-n} \frac{2}{3}.$$

Therefore, by the above inequalities, we have

$$|f(c) - f(x_n)| \ge 4^{-n} \left(1 - \frac{4}{13} - \frac{2}{3}\right) = 4^{-n} \cdot \frac{1}{39}$$

Therefore,

$$\frac{|f(c) - f(x_n)|}{|c - x_n|} \ge \frac{160^n}{3\pi} \cdot 4^{-n} \cdot \frac{1}{39} = \frac{40^n}{117\pi}.$$

Thus, $\left\{\frac{f(x_n)-f(c)}{x_n-c}\right\}_n$ is unbounded.

Remark 10. In other words, this proof by Weierstrass shows that there exists a continuous function that is nowhere differentiable!

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.