18.100A: Complete Lecture Notes

Lecture 18:

Weierstrass's Example of a Continuous and Nowhere Differentiable Function

Theorem 1

If $f: I \rightarrow \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c.

Proof: Since every point of I is a cluster point of I, f is continuous at $c \in I \Longleftrightarrow \lim _{x \rightarrow c} f(x)=f(c)$. Now,

$$
\begin{aligned}
\lim _{x \rightarrow c} f(x) & =\lim _{x \rightarrow c}(f(x)-f(c)+f(c)) \\
& =\lim _{x \rightarrow c}\left((x-c) \frac{f(x)-f(c)}{x-c}+f(c)\right) \\
& =0 \cdot f^{\prime}(c)+f(c)=f(c)
\end{aligned}
$$

Question 2. Is the converse true? Does f being continuous imply that f is differentiable?
The answer, is no.

Example 3

Let $f(x)=|x|$. Then, f is not differentiable at 0 .

Proof: We find a sequence $x_{n} \rightarrow 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0} \text { does not exist. }
$$

Let $x_{n}=\frac{(-1)^{n}}{n}$. Then, $\lim _{n \rightarrow \infty} x_{n}=0$. However,

$$
\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\frac{\left|(-1)^{n} / n\right|}{(-1)^{n} / n}=(-1)^{n}
$$

and $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.
Question 4. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then does there exist $a c \in \mathbb{R}$ such that f is differentiable at c ?
The answer is again no! This was shown by Weierstrass, aka the Godfather.
The basic idea is to build a continuous function that is a sum of highly oscillating functions.
Remark 5. Note that we number the upcoming theorems so we may reference them a bit later in this lecture.

Theorem 6 (Theorem I)

We will show the following

1. $\forall x, y \in \mathbb{R},|\cos x-\cos y| \leq|x-y|$.
2. Let $c \in \mathbb{R}$. Then, for all $K \in \mathbb{N}, \exists y \in(c+\pi / K, c+3 \pi / K)$ such that

$$
|\cos (K c)-\cos (K y)| \geq 1
$$

Proof:

1. In the proof of continuity of $\sin x$, we showed that $\forall x, y \in \mathbb{R},|\sin x-\sin y| \leq|x-y|$. Thus,

$$
|\cos x-\cos y|=|\sin (x+\pi / 2)-\sin (y+\pi / 2)| \leq|x-y|
$$

2. The function $f(x)=\cos (K x)$ is a $\frac{2 \pi}{K}$-periodic function. In particular, $([-1,1] \backslash \cos (K c)) \subset f(c+\pi / K, c+$ $3 \pi / K)$.

If $\cos K c \geq 0$, then we choose y such that $\cos (K y)=-1$. If $\cos (K c)<0$, then we choose y such that $\cos (K y)=1$. This completes the proof

Theorem 7 (Theorem II)

For all $a, b, c \in \mathbb{R}$,

$$
|a+b+c| \geq|a|-|b|-|c|
$$

Proof: We apply the Triangle Inequality twice:

$$
|a|=|a+b+b+(-b)+(-c)| \leq|a+b+b|+|b+c| \leq|a+b+c|+|b|+|c|
$$

Theorem 8 (Theorem III)

We will show the following:

1. $\forall x \in \mathbb{R}, \sum_{k=0}^{\infty} \frac{\cos \left(160^{k} x\right)}{4^{k}}$ is absolutely convergent.
2. The function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sum_{k=0}^{\infty} \frac{\cos \left(160^{k} x\right)}{4^{k}}$ is bounded and continuous.

Proof:

1. $\forall k,\left|\frac{\cos \left(160^{k} x\right)}{4^{k}}\right| \leq 4^{-k}$. Hence, by the Comparison Test,

$$
\sum_{k=0}^{\infty}\left|\frac{\cos \left(160^{k} x\right)}{4^{k}}\right| \text { converges }
$$

2. For all $x \in \mathbb{R},|f(x)| \leq \sum_{k=0}^{\infty} \frac{\left|\cos \left(160^{k} x\right)\right|}{4^{k}} \leq \sum 4^{-k}=\frac{4}{3}$. Therefore, f is bounded.

We now show that f is continuous over \mathbb{R}. Suppose $c \in \mathbb{R}$ and $x_{n} \rightarrow c$. Note that $\left\{\left|f\left(x_{n}\right)-f(c)\right|\right\}_{n}$ is bounded, and thus

$$
\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(c)\right|=0 \Longleftrightarrow \limsup _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(c)\right|=0
$$

We claim that for all $\epsilon>0$, $\lim \sup _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(c)\right| \leq \epsilon$. Let $\epsilon>0$. Choose M_{0} such that $\sum_{k=M_{0}+1}^{\infty} 4^{-k}<\frac{\epsilon}{2}$. Then,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(c)\right| & =\limsup _{n}\left|\sum_{k=0}^{M_{0}} \frac{\cos \left(160^{k} x_{n}\right)}{4^{k}}-\frac{\cos \left(160^{k} c\right)}{4^{k}}+\sum_{k=M_{0}+1}^{\infty} \frac{\cos \left(160^{k} x_{n}\right)}{4^{k}}-\frac{\cos \left(160^{k} c\right)}{4^{k}}\right| \\
& \leq \limsup _{n} \sum_{k=0}^{M_{0}} 4^{-k}\left|\cos \left(160^{k} x_{n}\right)-\cos \left(160^{k} c\right)\right|+\sum_{k=M_{0}+1}^{\infty} 4^{-k}\left(\left|\cos \left(160^{k} x_{n}\right)\right|+\left|\cos \left(160^{k} c\right)\right|\right) \\
& \leq \limsup _{n}\left(\sum_{k=0}^{M_{0}} 40^{k}\right)\left|x_{n}-c\right|+\epsilon=\epsilon
\end{aligned}
$$

Theorem 9 (Weierstrass)

The function $f(x)=\sum_{k=0}^{\infty} \frac{\cos \left(160^{k} x\right)}{4^{k}}$ is nowhere differentiable.

Proof: Let $c \in \mathbb{R}$. We will construct a sequence $x_{n} \rightarrow c$ such that $\left\{\frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}\right\}_{n}$ is unbounded. By Theorem I 2), $\forall n \in \mathbb{N}$ there exists an x_{n} such that a) $\frac{\pi}{160^{n}}<x_{n}-c<\frac{3 \pi}{160^{n}}$ and $\left.\mathbf{b}\right)\left|\cos \left(160^{n} c\right)-\cos \left(160^{n} x_{n}\right)\right| \geq 1$.

By a), $x_{n} \neq 0 \forall n$ and $\left|x_{n}-c\right| \leq \frac{3 \pi}{160^{n}} \rightarrow 0$. Let $f_{k}(x)=\frac{\cos \left(160^{k} x\right)}{4^{k}}$ so $f(x)=\sum f_{k}(x)$. Let $n \in \mathbb{N}$. Thus, denote

$$
\begin{aligned}
f(c)-f\left(x_{n}\right) & =f_{n}(c)-f_{n}\left(x_{n}\right)+\sum_{k=0}^{n-1}\left(f_{k}(c)-f_{k}\left(x_{n}\right)\right)+\sum_{k=n}^{\infty}\left(f_{k}(c)-f_{k}\left(x_{n}\right)\right) \\
& :=a_{n}+b_{n}+c_{n}
\end{aligned}
$$

Therefore, by Theorem II,

$$
\left|f(c)-f\left(x_{n}\right)\right| \geq\left|a_{n}\right|-\left|b_{n}\right|-\left|c_{n}\right| .
$$

By b), $\left|a_{n}\right|=4^{-n}\left|\cos \left(160^{k} x_{n}\right)-\cos \left(160^{k} c\right)\right| \geq 4^{-n}$. Furthermore, we have

$$
\left|b_{n}\right| \leq \sum_{k=0}^{n-1} 4^{-k}\left|\cos \left(160^{k} c\right)-\cos \left(160^{k} x_{n}\right)\right| \leq \sum_{k=0}^{n-1} 4^{-k} \cdot 160^{k}\left|x_{n}-c\right| \leq \frac{3 \pi}{160^{n}} \sum_{k=0}^{n-1} 40^{k}=\frac{3 \pi}{160^{n}} \cdot \frac{40^{n}-1}{39} \leq \frac{4^{-n+1}}{13}
$$

Finally, we have

$$
\left|c_{n}\right| \leq \sum_{k=n+1}^{\infty} 4^{-k}\left(\left|\cos \left(160^{k} c\right)\right|+\left|\cos \left(160^{k} x_{n}\right)\right|\right) \leq 2 \sum_{k=n+1}^{\infty} 4^{-k}=2 \cdot 4^{-n-1} \cdot \frac{4}{3}=4^{-n} \frac{2}{3}
$$

Therefore, by the above inequalities, we have

$$
\left|f(c)-f\left(x_{n}\right)\right| \geq 4^{-n}\left(1-\frac{4}{13}-\frac{2}{3}\right)=4^{-n} \cdot \frac{1}{39}
$$

Therefore,

$$
\frac{\left|f(c)-f\left(x_{n}\right)\right|}{\left|c-x_{n}\right|} \geq \frac{160^{n}}{3 \pi} \cdot 4^{-n} \cdot \frac{1}{39}=\frac{40^{n}}{117 \pi}
$$

Thus, $\left\{\frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}\right\}_{n}$ is unbounded.
Remark 10. In other words, this proof by Weierstrass shows that there exists a continuous function that is nowhere differentiable!

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

