
18.100A: Complete Lecture Notes

Lecture 19:
Differentiation Rules, Rolle’s Theorem, and the Mean Value Theorem

Theorem 1
Let f : I → R, g : I → R be differentiable at c ∈ I. Then,

1. (Linearity) ∀α ∈ R, (αf + g)′(c) = αf ′(c) + g′(c) .

2. (Product rule) (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

3. (Quotient rule) If g(x) 6= 0 for all x ∈ I, then(
f

g

)′
(c) =

f ′(c)g(c)− f(c)g′(c)
(g(c))2

.

Proof :

1. We can compute this directly:

lim
x→c

(αf + g)(x)− (αf + g)(c)

x− c
= lim

x→c
α
f(x)− f(c)

x− c
+
g(x)− g(c)
x− c

= αf ′(x) + g′(x).

2. We first write
f(x)g(x)− f(c)g(c)

x− c
=
f(x)− f(c)

x− c
· g(x) + f(c) · g(x)− g(c)

x− c
and use the fact that limx→c g(x) = f(c).

3. The quotient rule is left as an exercise to the reader.

Theorem 2 (Chain Rule)
Let I1, I2 be two intervals, g : I1 → I2 be differentiable at c ∈ I1, and f : I2 → R differentiable at g(c). Then,
f ◦ g : I1 → R is differentiable at c and

(f ◦ g)′(c) = f ′(g(c))g′(c).

Proof: Let h(x) = f(g(x)) and d = g(c). We want to prove that h′(c) = f ′(d)g′(c). Define the following

u(y) =


f(y)−f(d)

y−x y 6= d

f ′(d) y = d
and v(y) =


g(x)−g(c)

x−c x 6= c

g′(d) x = c
.

Then,

lim
y→d

u(y) = lim
y→d

f(y)− f(d)
y − d

= f ′(d) = u(d).
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Similarly,

lim
x→c

v(x) = lim
x→c

g(x)− g(c)
x− c

= g′(c) = v(c).

In other words, u is continuous at d and v is continuous at c. Now,

f(y)− f(d) = u(y)(y − d)

g(x)− g(c) = v(x)(x− c)

=⇒ h(x)− h(c) = f(g(x))− f(d)

= u(g(x))(g(x)− g(c))

= u(g(x))v(x)(x− c).

Therefore,

lim
x→c

h(x)− h(c)
x− c

= lim
x→c

u(g(x))v(x)

= u(g(c))v(c)

= f ′(g(c))g′(c).

Mean Value Theorem

Definition 3 (Relative Maximum/Minimum)
Let S ⊂ R and f : S → R. Then, f has a relative maximum at c ∈ S if ∃δ > 0 such that for all x ∈ S,
|x− c| < δ =⇒ f(x) ≤ f(c). The definition for relative maximum is analogous.

Theorem 4
If f : [a, b]→ R has a relative max or min at c ∈ (a, b) and f is differentiable at c, then

f ′(c) = 0.

Proof : If f has a relative maximum at c ∈ (a, b) then ∃δ > 0 such that (c− δ, c+ δ) ⊂ (a, b) and ∀x ∈ (c− δ, c+ δ),
f(x) ≤ f(c). Let

xn = c− δ

2n
∈ (c− δ, c).

Then, xn → c so

f ′(c) = lim
n→∞

f(xn)− f(c)
xn − c

≥ 0.
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Now let
yn = c+

δ

2n
∈ (c, c+ δ).

Then, yn → c so

f ′(c) = lim
n→∞

f(yn)− f(c)
yn − c

≤ 0.

Therefore, f ′(c) = 0. The proof for relative minimum is similar and thus left to the reader.

Theorem 5 (Rolle)
Let f : [a, b]→ R be continuous and differentiable on (a, b). If f(a) = f(b), then ∃c ∈ (a, b) such that f ′(c) = 0.

Remark 6. Are the hypotheses all necessary? This is left to the reader to figure out.

Proof : Let K = f(a) = f(b). Since f is continuous on [a, b], ∃c1, c2 ∈ [a, b] such that f achieves an absolute
maximum at c1 and absolute minimum at c2. If f(c1) > K =⇒ c1 ∈ (a, b). Therefore, f ′(c1) = 0 by the previous
theorem. Similarly, if f(c2) < K, then c2 ∈ (a, b) =⇒ f ′(c2) = 0. If

f(c1) ≤ K ≤ f(c2) =⇒ f(x) = K ∀x ∈ [a, b] =⇒ f ′(c)− 0 for any c ∈ (a, b).

Theorem 7 (Mean Value Theorem)
Let f : [a, b]→ R be continuous, and let f be differentiable on (a, b). Then, ∃c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Remark 8. The Mean Value Theorem is sometimes denoted MVT.

Proof : Define g : [a, b]→ R with

g(x) = f(x)− f(b) + f(b)− f(a)
b− a

(b− x).
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Then, g(a) = g(b) = 0. Thus, by Rolle’s theorem, ∃c ∈ (a, b) with g′(c) = 0, and hence

0 = f ′(c)− f(b)− f(a)
b− a

.

We now look at some useful applications of the MVT.

Theorem 9
If f : I → R is differentiable and f ′(x) = 0 for all x ∈ I, then f is constant.

Proof : Let a, b ∈ I with a < b. Then, f is continuous on [a, b] and differentiable on (a, b). Therefore, ∃c ∈ (a, b)

such that f(b)− f(a) = (b− a)f ′(c) = 0. Hence, f(b) = f(a) for all a, b ∈ I such that a < b.

Theorem 10
Let f : I → R be differentiable. Then,

1. f is increasing if and only if f ′(x) ≥ 0 for all x ∈ I and

2. f is decreasing if and only if f ′(x) ≤ 0 for all x ∈ I.

Proof :

1. (⇐= ) Suppose f ′(x) ≥ 0 for all x ∈ I. Let a, b ∈ I with a < b. Then, by MVT, ∃c ∈ (a, b) such that

f(b)− f(a) = (b− a)f ′(c) ≥ 0 =⇒ f(a) ≤ f(b).

( =⇒ ) Suppose f is increasing. Let c ∈ I and let {xn} be a sequence in I such that xn → c such that ∀n,
xn < c. Then, for all n, f(xn)− f(c) ≤ 0 =⇒ f(xn)−f(c)

xn−c ≥ 0. Therefore,

f ′(c) = lim
n→∞

f(xn)− f(c)
xn − c

≥ 0.

Now let {xn} be a sequence in I such that xn → c such that ∀n, xn > c. Then, for all n, f(xn) − f(c) ≥
0 =⇒ f(xn)−f(c)

xn−c ≥ 0. Therefore,

f ′(c) = lim
n→∞

f(xn)− f(c)
xn − c

≥ 0.

Hence, in either case, f ′(c) ≥ 0.

2. Notice that f is decreasing if and only if −f is increasing, and apply 1. to −f .
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