18.100A: Complete Lecture Notes

Lecture 19:

Differentiation Rules, Rolle's Theorem, and the Mean Value Theorem

Theorem 1

Let $f:I\to\mathbb{R},\,g:I\to\mathbb{R}$ be differentiable at $c\in I.$ Then,

- 1. (Linearity) $\forall \alpha \in \mathbb{R}, \ (\alpha f + g)'(c) = \alpha f'(c) + g'(c)$.
- 2. (Product rule) (fg)'(c) = f'(c)g(c) + f(c)g'(c).
- 3. (Quotient rule) If $g(x) \neq 0$ for all $x \in I$, then

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

Proof:

1. We can compute this directly:

$$\lim_{x \to c} \frac{(\alpha f + g)(x) - (\alpha f + g)(c)}{x - c} = \lim_{x \to c} \alpha \frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c} = \alpha f'(x) + g'(x).$$

2. We first write

$$\frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x) - f(c)}{x - c} \cdot g(x) + f(c) \cdot \frac{g(x) - g(c)}{x - c}$$

and use the fact that $\lim_{x\to c} g(x) = f(c)$.

3. The quotient rule is left as an exercise to the reader.

Theorem 2 (Chain Rule)

Let I_1, I_2 be two intervals, $g: I_1 \to I_2$ be differentiable at $c \in I_1$, and $f: I_2 \to \mathbb{R}$ differentiable at g(c). Then, $f \circ g: I_1 \to \mathbb{R}$ is differentiable at c and

$$(f \circ g)'(c) = f'(g(c))g'(c).$$

Proof: Let h(x) = f(g(x)) and d = g(c). We want to prove that h'(c) = f'(d)g'(c). Define the following

$$u(y) = \begin{cases} \frac{f(y) - f(d)}{y - x} & y \neq d \\ f'(d) & y = d \end{cases} \quad \text{and} \quad v(y) = \begin{cases} \frac{g(x) - g(c)}{x - c} & x \neq c \\ g'(d) & x = c \end{cases}$$

Then,

$$\lim_{y \to d} u(y) = \lim_{y \to d} \frac{f(y) - f(d)}{y - d} = f'(d) = u(d).$$

Similarly,

$$\lim_{x \to c} v(x) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = g'(c) = v(c).$$

In other words, u is continuous at d and v is continuous at c. Now,

$$f(y) - f(d) = u(y)(y - d)$$
$$g(x) - g(c) = v(x)(x - c)$$
$$\implies h(x) - h(c) = f(g(x)) - f(d)$$
$$= u(g(x))(g(x) - g(c))$$
$$= u(g(x))v(x)(x - c).$$

Therefore,

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} u(g(x))v(x)$$
$$= u(g(c))v(c)$$
$$= f'(g(c))g'(c).$$

Mean Value Theorem

Definition 3 (Relative Maximum/Minimum)

Let $S \subset \mathbb{R}$ and $f: S \to \mathbb{R}$. Then, f has a relative maximum at $c \in S$ if $\exists \delta > 0$ such that for all $x \in S$, $|x - c| < \delta \implies f(x) \le f(c)$. The definition for relative maximum is analogous.

Theorem 4

If $f:[a,b] \to \mathbb{R}$ has a relative max or min at $c \in (a,b)$ and f is differentiable at c, then

f'(c) = 0.

Proof: If f has a relative maximum at $c \in (a, b)$ then $\exists \delta > 0$ such that $(c - \delta, c + \delta) \subset (a, b)$ and $\forall x \in (c - \delta, c + \delta)$, $f(x) \leq f(c)$. Let

$$x_n = c - \frac{\delta}{2n} \in (c - \delta, c).$$

Then, $x_n \to c$ so

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0.$$

Now let

$$y_n = c + \frac{\delta}{2n} \in (c, c + \delta).$$

Then, $y_n \to c$ so

$$f'(c) = \lim_{n \to \infty} \frac{f(y_n) - f(c)}{y_n - c} \le 0$$

Therefore, f'(c) = 0. The proof for relative minimum is similar and thus left to the reader.

Theorem 5 (Rolle) Let $f : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b). If f(a) = f(b), then $\exists c \in (a, b)$ such that f'(c) = 0.

Proof: Let K = f(a) = f(b). Since f is continuous on [a, b], $\exists c_1, c_2 \in [a, b]$ such that f achieves an absolute maximum at c_1 and absolute minimum at c_2 . If $f(c_1) > K \implies c_1 \in (a, b)$. Therefore, $f'(c_1) = 0$ by the previous theorem. Similarly, if $f(c_2) < K$, then $c_2 \in (a, b) \implies f'(c_2) = 0$. If

$$f(c_1) \le K \le f(c_2) \implies f(x) = K \ \forall x \in [a, b] \implies f'(c) - 0 \text{ for any } c \in (a, b).$$

Theorem 7 (Mean Value Theorem) Let $f : [a, b] \to \mathbb{R}$ be continuous, and let f be differentiable on (a, b). Then, $\exists c \in (a, b)$ such that

f(b) - f(a) = f'(c)(b - a).

Remark 8. The Mean Value Theorem is sometimes denoted MVT.

Proof: Define $g : [a, b] \to \mathbb{R}$ with

$$g(x) = f(x) - f(b) + \frac{f(b) - f(a)}{b - a}(b - x).$$

Then, g(a) = g(b) = 0. Thus, by Rolle's theorem, $\exists c \in (a, b)$ with g'(c) = 0, and hence

$$0 = f'(c) - \frac{f(b) - f(a)}{b - a}.$$

We now look at some useful applications of the MVT.

Theorem 9

If $f: I \to \mathbb{R}$ is differentiable and f'(x) = 0 for all $x \in I$, then f is constant.

Proof: Let $a, b \in I$ with a < b. Then, f is continuous on [a, b] and differentiable on (a, b). Therefore, $\exists c \in (a, b)$ such that f(b) - f(a) = (b - a)f'(c) = 0. Hence, f(b) = f(a) for all $a, b \in I$ such that a < b.

Theorem 10

Let $f: I \to \mathbb{R}$ be differentiable. Then,

- 1. f is increasing if and only if $f'(x) \ge 0$ for all $x \in I$ and
- 2. f is decreasing if and only if $f'(x) \leq 0$ for all $x \in I$.

Proof:

1. (\iff) Suppose $f'(x) \ge 0$ for all $x \in I$. Let $a, b \in I$ with a < b. Then, by MVT, $\exists c \in (a, b)$ such that

$$f(b) - f(a) = (b - a)f'(c) \ge 0 \implies f(a) \le f(b).$$

 (\implies) Suppose f is increasing. Let $c \in I$ and let $\{x_n\}$ be a sequence in I such that $x_n \to c$ such that $\forall n, x_n < c$. Then, for all $n, f(x_n) - f(c) \leq 0 \implies \frac{f(x_n) - f(c)}{x_n - c} \geq 0$. Therefore,

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0.$$

Now let $\{x_n\}$ be a sequence in I such that $x_n \to c$ such that $\forall n, x_n > c$. Then, for all $n, f(x_n) - f(c) \ge 0 \implies \frac{f(x_n) - f(c)}{x_n - c} \ge 0$. Therefore,

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0$$

Hence, in either case, $f'(c) \ge 0$.

2. Notice that f is decreasing if and only if -f is increasing, and apply 1. to -f.

4

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.