18.100A: Complete Lecture Notes

Lecture 19:

Differentiation Rules, Rolle's Theorem, and the Mean Value Theorem

Theorem 1

Let $f: I \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ be differentiable at $c \in I$. Then,

1. (Linearity) $\forall \alpha \in \mathbb{R},(\alpha f+g)^{\prime}(c)=\alpha f^{\prime}(c)+g^{\prime}(c)$.
2. (Product rule) $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
3. (Quotient rule) If $g(x) \neq 0$ for all $x \in I$, then

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{(g(c))^{2}} .
$$

Proof:

1. We can compute this directly:

$$
\lim _{x \rightarrow c} \frac{(\alpha f+g)(x)-(\alpha f+g)(c)}{x-c}=\lim _{x \rightarrow c} \alpha \frac{f(x)-f(c)}{x-c}+\frac{g(x)-g(c)}{x-c}=\alpha f^{\prime}(x)+g^{\prime}(x) .
$$

2. We first write

$$
\frac{f(x) g(x)-f(c) g(c)}{x-c}=\frac{f(x)-f(c)}{x-c} \cdot g(x)+f(c) \cdot \frac{g(x)-g(c)}{x-c}
$$

and use the fact that $\lim _{x \rightarrow c} g(x)=f(c)$.
3. The quotient rule is left as an exercise to the reader.

Theorem 2 (Chain Rule)

Let I_{1}, I_{2} be two intervals, $g: I_{1} \rightarrow I_{2}$ be differentiable at $c \in I_{1}$, and $f: I_{2} \rightarrow \mathbb{R}$ differentiable at $g(c)$. Then, $f \circ g: I_{1} \rightarrow \mathbb{R}$ is differentiable at c and

$$
(f \circ g)^{\prime}(c)=f^{\prime}(g(c)) g^{\prime}(c)
$$

Proof: Let $h(x)=f(g(x))$ and $d=g(c)$. We want to prove that $h^{\prime}(c)=f^{\prime}(d) g^{\prime}(c)$. Define the following

$$
u(y)=\left\{\begin{array}{ll}
\frac{f(y)-f(d)}{y-x} & y \neq d \\
f^{\prime}(d) & y=d
\end{array} \text { and } \quad v(y)= \begin{cases}\frac{g(x)-g(c)}{x-c} & x \neq c \\
g^{\prime}(d) & x=c\end{cases}\right.
$$

Then,

$$
\lim _{y \rightarrow d} u(y)=\lim _{y \rightarrow d} \frac{f(y)-f(d)}{y-d}=f^{\prime}(d)=u(d)
$$

Similarly,

$$
\lim _{x \rightarrow c} v(x)=\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=g^{\prime}(c)=v(c)
$$

In other words, u is continuous at d and v is continuous at c. Now,

$$
\begin{aligned}
f(y)-f(d) & =u(y)(y-d) \\
g(x)-g(c) & =v(x)(x-c) \\
\Longrightarrow h(x)-h(c) & =f(g(x))-f(d) \\
& =u(g(x))(g(x)-g(c)) \\
& =u(g(x)) v(x)(x-c)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{h(x)-h(c)}{x-c} & =\lim _{x \rightarrow c} u(g(x)) v(x) \\
& =u(g(c)) v(c) \\
& =f^{\prime}(g(c)) g^{\prime}(c) .
\end{aligned}
$$

Mean Value Theorem

Definition 3 (Relative Maximum/Minimum)
Let $S \subset \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$. Then, f has a relative maximum at $c \in S$ if $\exists \delta>0$ such that for all $x \in S$, $|x-c|<\delta \Longrightarrow f(x) \leq f(c)$. The definition for relative maximum is analogous.

Theorem 4

If $f:[a, b] \rightarrow \mathbb{R}$ has a relative max or min at $c \in(a, b)$ and f is differentiable at c, then

$$
f^{\prime}(c)=0
$$

Proof: If f has a relative maximum at $c \in(a, b)$ then $\exists \delta>0$ such that $(c-\delta, c+\delta) \subset(a, b)$ and $\forall x \in(c-\delta, c+\delta)$, $f(x) \leq f(c)$. Let

$$
x_{n}=c-\frac{\delta}{2 n} \in(c-\delta, c)
$$

Then, $x_{n} \rightarrow c$ so

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0
$$

Now let

$$
y_{n}=c+\frac{\delta}{2 n} \in(c, c+\delta)
$$

Then, $y_{n} \rightarrow c$ so

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f(c)}{y_{n}-c} \leq 0
$$

Therefore, $f^{\prime}(c)=0$. The proof for relative minimum is similar and thus left to the reader.
Theorem 5 (Rolle)
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on (a, b). If $f(a)=f(b)$, then $\exists c \in(a, b)$ such that $f^{\prime}(c)=0$.

Remark 6. Are the hypotheses all necessary? This is left to the reader to figure out.
Proof: Let $K=f(a)=f(b)$. Since f is continuous on $[a, b], \exists c_{1}, c_{2} \in[a, b]$ such that f achieves an absolute maximum at c_{1} and absolute minimum at c_{2}. If $f\left(c_{1}\right)>K \Longrightarrow c_{1} \in(a, b)$. Therefore, $f^{\prime}\left(c_{1}\right)=0$ by the previous theorem. Similarly, if $f\left(c_{2}\right)<K$, then $c_{2} \in(a, b) \Longrightarrow f^{\prime}\left(c_{2}\right)=0$. If

$$
f\left(c_{1}\right) \leq K \leq f\left(c_{2}\right) \Longrightarrow f(x)=K \forall x \in[a, b] \Longrightarrow f^{\prime}(c)-0 \text { for any } c \in(a, b) .
$$

Theorem 7 (Mean Value Theorem)

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and let f be differentiable on (a, b). Then, $\exists c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Remark 8. The Mean Value Theorem is sometimes denoted MVT.

Proof: Define $g:[a, b] \rightarrow \mathbb{R}$ with

$$
g(x)=f(x)-f(b)+\frac{f(b)-f(a)}{b-a}(b-x) .
$$

Then, $g(a)=g(b)=0$. Thus, by Rolle's theorem, $\exists c \in(a, b)$ with $g^{\prime}(c)=0$, and hence

$$
0=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

We now look at some useful applications of the MVT.

Theorem 9

If $f: I \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)=0$ for all $x \in I$, then f is constant.

Proof: Let $a, b \in I$ with $a<b$. Then, f is continuous on $[a, b]$ and differentiable on (a, b). Therefore, $\exists c \in(a, b)$ such that $f(b)-f(a)=(b-a) f^{\prime}(c)=0$. Hence, $f(b)=f(a)$ for all $a, b \in I$ such that $a<b$.

Theorem 10

Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then,

1. f is increasing if and only if $f^{\prime}(x) \geq 0$ for all $x \in I$ and
2. f is decreasing if and only if $f^{\prime}(x) \leq 0$ for all $x \in I$.

Proof:

1. (\Longleftarrow) Suppose $f^{\prime}(x) \geq 0$ for all $x \in I$. Let $a, b \in I$ with $a<b$. Then, by MVT, $\exists c \in(a, b)$ such that

$$
f(b)-f(a)=(b-a) f^{\prime}(c) \geq 0 \Longrightarrow f(a) \leq f(b)
$$

(\Longrightarrow) Suppose f is increasing. Let $c \in I$ and let $\left\{x_{n}\right\}$ be a sequence in I such that $x_{n} \rightarrow c$ such that $\forall n$, $x_{n}<c$. Then, for all $n, f\left(x_{n}\right)-f(c) \leq 0 \Longrightarrow \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0$. Therefore,

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0
$$

Now let $\left\{x_{n}\right\}$ be a sequence in I such that $x_{n} \rightarrow c$ such that $\forall n, x_{n}>c$. Then, for all $n, f\left(x_{n}\right)-f(c) \geq$ $0 \Longrightarrow \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0$. Therefore,

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0
$$

Hence, in either case, $f^{\prime}(c) \geq 0$.
2. Notice that f is decreasing if and only if $-f$ is increasing, and apply 1. to $-f$.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

