18.100A: Complete Lecture Notes

Lecture 20:
Taylor's Theorem and the Definition of Riemann Sums

Taylor's Theorem

Remark 1. Taylor's theorem is essentially the Mean Value Theorem for higher order derivatives.

Definition 2 (n-times Differentiable)

We say $f: I \rightarrow \mathbb{R}$ is n-times differentiable on $J \subset I$ if $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ exist at every point in J.

Notation 3

We denote the n-th derivative of f as $f^{(n)}$ (as used above).

Theorem 4 (Taylor)

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and has n continuous derivatives on $[a, b]$ such that $f^{(n+1)}$ exists on (a, b).
Given $x_{0}, x \in[a, b]$, there exists a $c \in\left(x_{0}, x\right)$ such that

$$
f(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Denote the large sum as $P_{n}(x)$ and the last term with $R_{n}(x)$.

Definition 5

$P_{n}(x)$ is the n-th order Taylor polynomial for f at $x_{0} . R_{n}(x)$ is the n-th order remainder term.

We will essentially apply the Mean Value Theorem $n+1$ times to prove Taylor's theorem.
Proof: Let $x, x_{0} \in[a, b]$. If $x=x_{0}$ then any c will satisfy the theorem. So, suppose $x \neq x_{0}$. Let $M_{x, x_{0}}=$ $\frac{f(x)-P_{n}(x)}{\left(x-x_{0}\right)^{n+1}}$. Hence,

$$
f(x)=P_{n}(x)+M_{x, x_{0}}\left(x-x_{0}\right)^{n+1}
$$

Now, for $0 \leq k \leq n$,

$$
f^{k}\left(x_{0}\right)=P_{n}^{(k)}\left(x_{0}\right)
$$

Let $g(s)=f(s)-P_{n}(s)-M_{x, x_{0}}\left(s-x_{0}\right)^{n+1}$ (notably, $n+1$-times differentiable. Then,

$$
\begin{aligned}
g\left(x_{0}\right) & =f\left(x_{0}\right)-P_{n}\left(x_{0}\right)-M_{x, x_{0}}\left(x_{0}-x_{0}\right)^{n+1}=0 \\
g^{\prime}\left(x_{0}\right) & =f^{\prime}\left(x_{0}\right)-P_{n}^{\prime}\left(x_{0}\right)-M_{x, x_{0}}(n+1)\left(x_{0}-x_{0}\right)^{n}=0 \\
& \vdots \\
g^{(n)}\left(x_{0}\right) & =f^{(n)}\left(x_{0}\right)-P_{n}^{(n)}\left(x_{0}\right)-M_{x, x_{0}}(n+1)!\left(x_{0}-x_{0}\right)=0
\end{aligned}
$$

Now, notice that $g(x)=0$ and $g\left(x_{0}\right)=0$. By the MVT, there exists an $x_{1} \in\left(x_{0}, x\right)$ such that $g^{\prime}\left(x_{1}\right)=0$. Thus, $g^{\prime}\left(x_{0}\right)=0$ and $g^{\prime}\left(x_{1}\right)=0$. Therefore, $\exists x_{2} \in\left(x_{0}, x_{1}\right)$ such that $g^{\prime \prime}\left(x_{2}\right)=0$. Continuing, we analogously find x_{n} between x_{0} and x_{n-1} such that $g^{(n)}\left(x_{n}\right)=0$. Then, finally, $g^{(n)}\left(x_{0}\right)=0$ and $g^{(n)}\left(x_{n}\right)=0$ implies $\exists c \in\left(x_{0}, x_{n}\right)$ (and thus between x_{0} and x) such that

$$
g^{(n+1)}(c)=0
$$

We may compute

$$
\frac{\mathrm{d}^{n+1}}{\mathrm{~d} s^{(n+1)}} M_{x, x_{0}}\left(s-x_{0}\right)^{n+1}=M_{x, x_{0}}(n+1)!
$$

Furthermore, $P_{n}^{(n+1)}(c)=0$ since P_{n} is a polynomial of degree n. Thereforee,

$$
0=g^{(n+1)}(c)=f^{(n+1)}(c)-M_{x, x_{0}}(n+1)!
$$

which implies $M_{x, x_{0}}=\frac{f^{(n+1)!}(c)}{(n+1)!}$ and thus

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Theorem 6 (Second Derivative Test)

Suppose $f:(a, b) \rightarrow \mathbb{R}$ has two continuous derivatives. If $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then f has a strict relative minimum at x_{0}.

Proof: Since $f^{\prime \prime}$ is continuous at x_{0} and

$$
\lim _{c \rightarrow x_{0}} f^{\prime \prime}(c)=f^{\prime \prime}\left(x_{0}\right)>0
$$

we have that $\exists \delta>0$ such that for all $c \in\left(x_{0}-\delta, x_{0}+\delta\right), f^{\prime \prime}(c)>0$. Let $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ (as you will show in your homework). Then, by Taylor's theorem, $\exists c$ between x and x_{0} (hence $\left.c \in\left(x_{0}-\delta, x_{0}+\delta\right)\right)$ such that

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime \prime}(c)}{2}\left(x-x_{0}\right)^{2} \geq f\left(x_{0}\right)
$$

with $f(x)>f\left(x_{0}\right)$ if $x \neq x_{0}$.

The Riemann Integral

Remark 7. Riemann integration is the first rigorous theory of 'area' that agrees with experience (areas of rectangles, triangles, circles), and it is the inverse of differentiation. However, it is not a complete theory of area (see Lebesgue integration).

The Riemann Integral

Definition 8

We define the set

$$
C([a, b]):=\{f:[a, b] \rightarrow \mathbb{R} \mid f \text { is continuous }\} .
$$

Definition 9 (Partition)

A partition \underline{x} of $[a, b]$ is a finite set

$$
\underline{x}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\} .
$$

The norm of \underline{x}, denoted $\|\underline{x}\|$, is the number

$$
\|\underline{x}\|:=\max \left\{x_{1}-x_{0}, x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}\right\} .
$$

Definition 10 (Tag)

If \underline{x} is a partition, a tag of \underline{x} is a finite set $\underline{\xi}=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ such that

$$
a=x_{0} \leq \xi_{1} \leq x_{1} \leq \xi_{2} \leq x_{2} \leq \cdots \leq x_{n-1} \leq \xi_{n} \leq x_{n}=b
$$

The pair $(\underline{x}, \underline{\xi})$ is referred to as a tagged partition.

Example 11

Consider the tagged partition $(\underline{x}, \underline{\xi})=(\{1,3 / 2,2,3\},\{5 / 4,7 / 4,5 / 2\}$. Then,

$$
\|\underline{x}\|=\max \{3 / 2-1,2-3 / 2,3-2\}=1 .
$$

Definition 12 (Riemann sum)

The Riemann sum of f corresponding to $(\underline{x}, \underline{\xi})$ is the number

$$
S_{f}(\underline{x}, \underline{\xi}):=\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

Let's try to understand how to interpret this using a picture. For $f \in C([a, b])$ positive, $S_{f}(\underline{x}, \underline{\xi})$ is an approximate area under the graph of f. As $\|\underline{x}\| \rightarrow 0$, we should expect these approximate areas to converge to a number A, which we interpret as the area under the curve f on the interval $[a, b]$.

Question 13. Do these approximate sums actually converge?
We will answer this question and more during the next few lectures.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

