18.100A: Complete Lecture Notes

Lecture 22:

The Fundamental Theorem of Calculus, Integration by Parts, and Change of Variable Formula

Theorem 1 (Additivity) If $f \in C([a, b])$ and a < c < b, then

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof: Let $\{(\underline{y}(r), \underline{\zeta}(r))\}_r$ and $\{(\underline{z}(r), \underline{\eta}(r))\}_r$ be tagged partitions of [a, c] and [c, b] respectively such that $\|\underline{y}(r)\| \to 0$ and $\|\underline{z}(r)\| \to 0$. Define

$$\underline{x}(r) = \underline{y}(r) \cup \underline{z}(r)$$
$$\underline{\xi}(r) = \underline{\zeta}(r) \cup \underline{\eta}(r),$$

a sequence of tagged partitions of [a, b]. Then,

$$\|\underline{x}(r)\| \le \|\underline{y}(r)\| + \|\underline{z}(r)\| \to 0.$$

Thus,

$$\int_{a}^{b} f = \lim_{t \to \infty} S_{f}(\underline{x}(r), \underline{\xi}(r))$$
$$= \lim_{r \to \infty} (S_{f}(\underline{y}(r), \underline{\zeta}(r)) + S_{f}(\underline{z}(r), \underline{\eta}(r)))$$
$$= \int_{a}^{c} f + \int_{c}^{b} f.$$

Theorem 2 Let $f \in C([a, b])$, and

$$m_f = \inf\{f(x) \mid x \in [a, b]\} \in \mathbb{R}$$
$$M_f = \sup\{f(x) \mid x \in [a, b]\} \in \mathbb{R}.$$

Then,

$$m_f(b-a) \le \int_a^b f \le M_f(b-a).$$

Proof: Let $\{(\underline{x}(r), \underline{\xi}(r))\}_r$ be a sequence of tagged partitions with $\|\underline{x}(r)\| \to 0$. Then,

$$S_f(\underline{x}(r),\underline{\xi}(r)) = \sum_{k=1}^n f(\xi_k(r))(x_k(r) - x_{k-1}(r)) \ge m_f \sum_{k=1}^n (x_k(r) - x_{k-1}(r)) = m_f(b-a).$$

Similarly,

$$S_f(\underline{x}(r),\underline{\xi}(r)) = \sum_{k=1}^n f(\xi_k(r))(x_k(r) - x_{k-1}(r)) \le M_f \sum_{k=1}^n (x_k(r) - x_{k-1}(r)) = M_f(b-a).$$

Therefore, for all r,

$$m_f(b-a) \le S_f(\underline{x}(r), \underline{\xi}(r)) \le M_f(b-a) \implies m_f(b-a) \le \int_a^b f \le M_f(b-a).$$

Theorem 3

Suppose $f \in C([a, b])$ and $g \in C([a, b])$.

1. If $\forall x \in [a, b] f(x) \leq g(x)$, then

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

2. (Triangle Inequality for integrals): $|\int_a^b f| \le \int_a^b |f|$.

Proof:

1. Let $\{(\underline{x}(r), \underline{\xi}(r))\}_r$ be a sequence of tagged partitions such that $\|\underline{x}(r)\| \to 0$. Then, for all $r \in \mathbb{N}$,

$$S_f(\underline{x}(r), \underline{\xi}(r)) = \sum_{j=1}^n f(\xi_j(r))(x_j(r) - x_{j-1}(r))$$
$$\leq \sum_{j=1}^n g(\xi_j(r))(x_j(r) - x_{j-1}(r))$$
$$= S_g(\underline{x}(r), \underline{\xi}(r)).$$

Then, letting $r \to \infty$, we get that

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

2. Notice that $\pm f(x) \leq |f(x)|$ for all x, and thus

$$\pm \int_{a}^{b} f \leq \int_{a}^{b} |f| \implies -\int_{a}^{b} f \leq \int_{a}^{b} f \leq \int_{a}^{b} |f|.$$

Therefore, $|\int_a^b f| \le \int_a^b |f|$.

Remark 4. There are some conventions that are worth noting:

1. $\int_{a}^{a} f := 0$. This is consistent with our definitions and theorems thus far as $\lim_{b\to a} |\int_{a}^{b} f| = 0$. 2. $\int_{a}^{b} f = -\int_{b}^{a} f$.

Fundamental Theorem of Calculus

Theorem 5 (Fundamental Theorem of Calculus) Suppose $f \in C([a, b])$.

1. If $F : [a, b] \to \mathbb{R}$ is differentiable and F' = f, then

$$\int_{a}^{b} f = F(b) - F(a)$$

2. The function $G(x) := \int_a^x f$ is differentiable on [a, b] and

$$\begin{cases} G' = f\\ G(a) = 0 \end{cases}$$

Remark 6. We sometimes abbreviate the Fundamental Theorem of Calculus to FTC.

Proof:

1. Let $\{(\underline{x}(r))\}_r$ be a sequence of partitions with $\|\underline{x}\| \to 0$. Then, by the Mean Value Theorem, $\forall r \forall j$, there exists a $\xi_j(r) \in [x_{j-1}(r), x_j(r)]$ such that

$$F(x_j(r)) - F(x_{j-1}(r)) = F'(\xi_j(r))(x_j(r) - x_{j-1}(r)) = f(\xi_j(r))(x_j(r) - x_{j-1}(r)).$$

Thus,

$$\int_{a}^{b} f = \lim_{r \to \infty} \sum_{j=1}^{n(r)} f(\xi_{j}(r))(x_{j}(r) - x_{j-1}(r))$$
$$= \lim_{r \to \infty} \sum_{j=1}^{n(r)} F(x_{j}(r)) - F(x_{j-1}(r))$$
$$= \lim_{r \to \infty} (F(b) - F(a)) = F(b) - F(a).$$

2. Let $c \in [a, b]$. We wish to show that

$$\lim_{x \to c} \frac{\int_a^x f - \int_a^c f}{x - c} = f(c)$$

Let $\epsilon > 0$. Then, since f is continuous at $c, \exists \delta_0 > 0$ such that

$$|t-c| < \delta_0 \implies |f(t) - f(c)| < \epsilon/2.$$

Choose $\delta = \delta_0$. Suppose $0 < x - c < \delta$. If $t \in [c, x]$, then

$$|t-c| \le |x-c| < \delta = \delta_0.$$

Thus,

$$\begin{aligned} \left| \frac{1}{x-c} \int_c^x f(t) \, \mathrm{d}t - f(c) \right| &= \left| \frac{1}{x-c} \int_c^t f(t) \, \mathrm{d}t - \frac{1}{x-c} \int_x^c f(c) \, \mathrm{d}t \right| \\ &= \frac{1}{x-c} \left| \int_c^x (f(t) - f(c)) \, \mathrm{d}t \right| \\ &\leq \frac{1}{x-c} \int_c^x |f(t) - f(c)| \, \mathrm{d}t \\ &\leq \frac{1}{x-c} \int_c^x \epsilon/2 \, \mathrm{d}t \\ &= \frac{1}{x-c} \cdot \frac{\epsilon}{2} (x-c) = \frac{\epsilon}{2}. \end{aligned}$$

A similar argument holds for $0 < c - x < \delta$. Thus,

$$0 < |x - c| < \delta \implies \left| \frac{\int_a^x f - \int_a^c f}{x - c} - f(c) \right| \le \frac{\epsilon}{2} < \epsilon.$$

Theorem 7 (Integration by Parts) Suppose $f, g \in C([a, b])$ and $f', g' \in C([a, b])$. Then,

$$\int_a^b f'g = (f(b)g(b) - f(a)g(a)) - int_a^b fg'.$$

Proof: We have

$$(fg)' = f'g + fg'$$

Therefore, by the Fundamental Theorem of Calculus,

$$f(b)g(b) - f(a)g(a) = \int_a^b f'g + \int_a^b fg'$$

Г		
L	_	

Remark 8. We sometimes abbreviate Integration By Parts as IBP.

Lemma 9 (Riemann-Lebesgue) Suppose $f \in C([-\pi, \pi])$ and $f' \in C([-\pi, \pi])$ with f 2 π -periodic with $f(-\pi) = f(\pi)$. For $n \in \mathbb{N} \cup \{0\}$, let

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, \mathrm{d}x$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{d}x.$$

Then,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$$

Definition 10 (Fourier Coefficients)

The a_n, b_n defined in the above lemma are referred to as the Fourier coefficients of f.

Proof: Using IBP, we have

$$b_{n}| = \frac{1}{\pi} \left| \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx \right|$$

= $\frac{1}{\pi} \left| \int_{-\pi}^{\pi} (\frac{1}{n} \sin(nx))' f(x) \, dx \right|$
= $\left| \frac{1}{n} (f(\pi) \sin(n\pi) - f(-pi) \sin(n(-\pi))) - \frac{1}{n} \int_{-\pi}^{\pi} \sin(nx) f'(x) \, dx \right|.$

Notice that $\sin(n\pi) = \sin(n(-\pi)) = 0$ for all $n \in \mathbb{N}$. Hence,

$$|b_n| \le \frac{1}{n} \int_{-\pi}^{\pi} |\sin(nx)| |f'(x)| \, \mathrm{d}x$$
$$\le \frac{1}{n} \int_{-\pi}^{\pi} |f'| \to 0.$$

By the Squeeze Theorem, $|b_n| \to 0$. A similar arguments works for a_n .

Theorem 11 (Change of Variables) Let $\varphi : [a, b] \to [c, d]$ be continuously differentiable with $\varphi' > 0$ on [a, b], $\varphi(a) = c$, and $\varphi(b) = d$. Then,

$$\int_{c}^{d} f(u) \, \mathrm{d}u = \int_{a}^{b} f(\varphi(x))\varphi'(x) \, \mathrm{d}x.$$

Proof: Let $F : [a, b] \to \mathbb{R}$ such that F' = f. Then,

$$F(\varphi(x))' = f(\varphi(x)).$$

Hence, by the FTC,

$$\int_{a}^{b} f(\varphi(x))\varphi'(x) \, \mathrm{d}x = \int_{a}^{b} F(\varphi(x))' \, \mathrm{d}x$$
$$= F(\varphi(b)) - F(\varphi(a))$$
$$= F(d) - F(c).$$

Furthermore, by the FTC,

$$\int_c^d f(u) \,\mathrm{d}u = \int_c^d F(u)' \,\mathrm{d}u = F(d) - F(c).$$

Г		н
L		1
L		_

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.