18.100A: Complete Lecture Notes

Lecture 22:

The Fundamental Theorem of Calculus, Integration by Parts, and Change of Variable Formula

Theorem 1 (Additivity)

If $f \in C([a, b])$ and $a<c<b$, then

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Proof: Let $\{(\underline{y}(r), \underline{\zeta}(r))\}_{r}$ and $\{(\underline{z}(r), \underline{\eta}(r))\}_{r}$ be tagged partitions of $[a, c]$ and $[c, b]$ respectively such that $\|\underline{y}(r)\| \rightarrow$ 0 and $\|\underline{z}(r)\| \rightarrow 0$. Define

$$
\begin{aligned}
& \underline{x}(r)=\underline{y}(r) \cup \underline{z}(r) \\
& \underline{\xi}(r)=\underline{\zeta}(r) \cup \underline{\eta}(r),
\end{aligned}
$$

a sequence of tagged partitions of $[a, b]$. Then,

$$
\|\underline{x}(r)\| \leq\|\underline{y}(r)\|+\|\underline{z}(r)\| \rightarrow 0 .
$$

Thus,

$$
\begin{aligned}
\int_{a}^{b} f & =\lim _{t \rightarrow \infty} S_{f}(\underline{x}(r), \underline{\xi}(r)) \\
& =\lim _{r \rightarrow \infty}\left(S_{f}(\underline{y}(r), \underline{\zeta}(r))+S_{f}(\underline{z}(r), \underline{\eta}(r))\right) \\
& =\int_{a}^{c} f+\int_{c}^{b} f .
\end{aligned}
$$

Theorem 2

Let $f \in C([a, b])$, and

$$
\begin{aligned}
& m_{f}=\inf \{f(x) \mid x \in[a, b]\} \in \mathbb{R} \\
& M_{f}=\sup \{f(x) \mid x \in[a, b]\} \in \mathbb{R} .
\end{aligned}
$$

Then,

$$
m_{f}(b-a) \leq \int_{a}^{b} f \leq M_{f}(b-a) .
$$

Proof: Let $\{(\underline{x}(r), \underline{\xi}(r))\}_{r}$ be a sequence of tagged partitions with $\|\underline{x}(r)\| \rightarrow 0$. Then,

$$
S_{f}(\underline{x}(r), \underline{\xi}(r))=\sum_{k=1}^{n} f\left(\xi_{k}(r)\right)\left(x_{k}(r)-x_{k-1}(r)\right) \geq m_{f} \sum_{k=1}^{n}\left(x_{k}(r)-x_{k-1}(r)\right)=m_{f}(b-a) .
$$

Similarly,

$$
S_{f}(\underline{x}(r), \underline{\xi}(r))=\sum_{k=1}^{n} f\left(\xi_{k}(r)\right)\left(x_{k}(r)-x_{k-1}(r)\right) \leq M_{f} \sum_{k=1}^{n}\left(x_{k}(r)-x_{k-1}(r)\right)=M_{f}(b-a)
$$

Therefore, for all r,

$$
m_{f}(b-a) \leq S_{f}(\underline{x}(r), \underline{\xi}(r)) \leq M_{f}(b-a) \Longrightarrow m_{f}(b-a) \leq \int_{a}^{b} f \leq M_{f}(b-a)
$$

Theorem 3

Suppose $f \in C([a, b])$ and $g \in C([a, b])$.

1. If $\forall x \in[a, b] f(x) \leq g(x)$, then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

2. (Triangle Inequality for integrals): $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.

Proof:

1. Let $\left\{(\underline{x}(r), \underline{\xi}(r)\}_{r}\right.$ be a sequence of tagged partitions such that $\|\underline{x}(r)\| \rightarrow 0$. Then, for all $r \in \mathbb{N}$,

$$
\begin{aligned}
S_{f}(\underline{x}(r), \underline{\xi}(r)) & =\sum_{j=1}^{n} f\left(\xi_{j}(r)\right)\left(x_{j}(r)-x_{j-1}(r)\right) \\
& \leq \sum_{j=1}^{n} g\left(\xi_{j}(r)\right)\left(x_{j}(r)-x_{j-1}(r)\right) \\
& =S_{g}(\underline{x}(r), \underline{\xi}(r))
\end{aligned}
$$

Then, letting $r \rightarrow \infty$, we get that

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

2. Notice that $\pm f(x) \leq|f(x)|$ for all x, and thus

$$
\pm \int_{a}^{b} f \leq \int_{a}^{b}|f| \Longrightarrow-\int_{a}^{b} f \leq \int_{a}^{b} f \leq \int_{a}^{b}|f|
$$

Therefore, $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.

Remark 4. There are some conventions that are worth noting:

1. $\int_{a}^{a} f:=0$. This is consistent with our definitions and theorems thus far as $\lim _{b \rightarrow a}\left|\int_{a}^{b} f\right|=0$.
2. $\int_{a}^{b} f=-\int_{b}^{a} f$.

Fundamental Theorem of Calculus

Theorem 5 (Fundamental Theorem of Calculus)
Suppose $f \in C([a, b])$.

1. If $F:[a, b] \rightarrow \mathbb{R}$ is differentiable and $F^{\prime}=f$, then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

2. The function $G(x):=\int_{a}^{x} f$ is differentiable on $[a, b]$ and

$$
\left\{\begin{array}{l}
G^{\prime}=f \\
G(a)=0
\end{array}\right.
$$

Remark 6. We sometimes abbreviate the Fundamental Theorem of Calculus to FTC.

Proof:

1. Let $\{(\underline{x}(r))\}_{r}$ be a sequence of partitions with $\|\underline{x}\| \rightarrow 0$. Then, by the Mean Value Theorem, $\forall r \forall j$, there exists a $\xi_{j}(r) \in\left[x_{j-1}(r), x_{j}(r)\right]$ such that

$$
F\left(x_{j}(r)\right)-F\left(x_{j-1}(r)\right)=F^{\prime}\left(\xi_{j}(r)\right)\left(x_{j}(r)-x_{j-1}(r)\right)=f\left(\xi_{j}(r)\right)\left(x_{j}(r)-x_{j-1}(r)\right)
$$

Thus,

$$
\begin{aligned}
\int_{a}^{b} f & =\lim _{r \rightarrow \infty} \sum_{j=1}^{n(r)} f\left(\xi_{j}(r)\right)\left(x_{j}(r)-x_{j-1}(r)\right) \\
& =\lim _{r \rightarrow \infty} \sum_{j=1}^{n(r)} F\left(x_{j}(r)\right)-F\left(x_{j-1}(r)\right) \\
& =\lim _{r \rightarrow \infty}(F(b)-F(a))=F(b)-F(a)
\end{aligned}
$$

2. Let $c \in[a, b]$. We wish to show that

$$
\lim _{x \rightarrow c} \frac{\int_{a}^{x} f-\int_{a}^{c} f}{x-c}=f(c)
$$

Let $\epsilon>0$. Then, since f is continuous at $c, \exists \delta_{0}>0$ such that

$$
|t-c|<\delta_{0} \Longrightarrow|f(t)-f(c)|<\epsilon / 2
$$

Choose $\delta=\delta_{0}$. Suppose $0<x-c<\delta$. If $t \in[c, x]$, then

$$
|t-c| \leq|x-c|<\delta=\delta_{0}
$$

Thus,

$$
\begin{aligned}
\left|\frac{1}{x-c} \int_{c}^{x} f(t) \mathrm{d} t-f(c)\right| & =\left|\frac{1}{x-c} \int_{c}^{t} f(t) \mathrm{d} t-\frac{1}{x-c} \int_{x}^{c} f(c) \mathrm{d} t\right| \\
& =\frac{1}{x-c}\left|\int_{c}^{x}(f(t)-f(c)) \mathrm{d} t\right| \\
& \leq \frac{1}{x-c} \int_{c}^{x}|f(t)-f(c)| \mathrm{d} t \\
& \leq \frac{1}{x-c} \int_{c}^{x} \epsilon / 2 \mathrm{~d} t \\
& =\frac{1}{x-c} \cdot \frac{\epsilon}{2}(x-c)=\frac{\epsilon}{2}
\end{aligned}
$$

A similar argument holds for $0<c-x<\delta$. Thus,

$$
0<|x-c|<\delta \Longrightarrow\left|\frac{\int_{a}^{x} f-\int_{a}^{c} f}{x-c}-f(c)\right| \leq \frac{\epsilon}{2}<\epsilon
$$

Theorem 7 (Integration by Parts)
Suppose $f, g \in C([a, b])$ and $f^{\prime}, g^{\prime} \in C([a, b])$. Then,

$$
\int_{a}^{b} f^{\prime} g=(f(b) g(b)-f(a) g(a))-i n t_{a}^{b} f g^{\prime}
$$

Proof: We have

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

Therefore, by the Fundamental Theorem of Calculus,

$$
f(b) g(b)-f(a) g(a)=\int_{a}^{b} f^{\prime} g+\int_{a}^{b} f g^{\prime}
$$

Remark 8. We sometimes abbreviate Integration By Parts as IBP.

Lemma 9 (Riemann-Lebesgue)

Suppose $f \in C([-\pi, \pi])$ and $f^{\prime} \in C([-\pi, \pi])$ with $f 2 \pi$-periodic with $f(-\pi)=f(\pi)$. For $n \in \mathbb{N} \cup\{0\}$, let

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x
\end{aligned}
$$

Then,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0
$$

Definition 10 (Fourier Coefficients)

The a_{n}, b_{n} defined in the above lemma are referred to as the Fourier coefficients of f.

Proof: Using IBP, we have

$$
\begin{aligned}
\left|b_{n}\right| & =\frac{1}{\pi}\left|\int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x\right| \\
& =\frac{1}{\pi}\left|\int_{-\pi}^{\pi}\left(\frac{1}{n} \sin (n x)\right)^{\prime} f(x) \mathrm{d} x\right| \\
& =\left|\frac{1}{n}(f(\pi) \sin (n \pi)-f(-p i) \sin (n(-\pi)))-\frac{1}{n} \int_{-\pi}^{\pi} \sin (n x) f^{\prime}(x) \mathrm{d} x\right|
\end{aligned}
$$

Notice that $\sin (n \pi)=\sin (n(-\pi))=0$ for all $n \in \mathbb{N}$. Hence,

$$
\begin{aligned}
\left|b_{n}\right| & \leq \frac{1}{n} \int_{-\pi}^{\pi}|\sin (n x)|\left|f^{\prime}(x)\right| \mathrm{d} x \\
& \leq \frac{1}{n} \int_{-\pi}^{\pi}\left|f^{\prime}\right| \rightarrow 0
\end{aligned}
$$

By the Squeeze Theorem, $\left|b_{n}\right| \rightarrow 0$. A similar arguments works for a_{n}.

Theorem 11 (Change of Variables)
Let $\varphi:[a, b] \rightarrow[c, d]$ be continuously differentiable with $\varphi^{\prime}>0$ on $[a, b], \varphi(a)=c$, and $\varphi(b)=d$. Then,

$$
\int_{c}^{d} f(u) \mathrm{d} u=\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) \mathrm{d} x
$$

Proof: Let $F:[a, b] \rightarrow \mathbb{R}$ such that $F^{\prime}=f$. Then,

$$
F(\varphi(x))^{\prime}=f(\varphi(x))
$$

Hence, by the FTC,

$$
\begin{aligned}
\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) \mathrm{d} x & =\int_{a}^{b} F(\varphi(x))^{\prime} \mathrm{d} x \\
& =F(\varphi(b))-F(\varphi(a)) \\
& =F(d)-F(c)
\end{aligned}
$$

Furthermore, by the FTC,

$$
\int_{c}^{d} f(u) \mathrm{d} u=\int_{c}^{d} F(u)^{\prime} \mathrm{d} u=F(d)-F(c)
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

