Sequences of Function

Power Series

Remark 1. Power series motivate the general discussion of sequences of functions.

Definition 2 (Power series)
A power series about x_0 is a series of the form
\[\sum_{m=0}^{\infty} a_m(x-x_0)^m. \]

Theorem 3
Suppose
\[R = \lim_{m \to \infty} |a_m|^{1/n} \]
exists, and let
\[p = \begin{cases} \frac{1}{R} & R > 0 \\ \infty & R = 0. \end{cases} \]
Then, $\sum a_m(x-x_0)^m$ converges absolutely if $|x-x_0| < p$ and diverges if $|x-x_0| > p$.

Definition 4 (Radius of Convergence)
In the above theorem, we define p to be the radius of convergence.

Proof: We have
\[\lim_{n \to \infty} |a_m(x-x_0)^m|^{1/m} = R|x-x_0|, \]
and the theorem follows by the Root test.

Suppose $\sum a_m(x-x_0)^m$ is a power series with radius of convergence p. Furthermore, define $f : (x_0 - p, x_0 + p) \to \mathbb{R}$ such that
\[f(x) := \sum_{m=0}^{\infty} a_m(x-x_0)^m. \]
Then, f is a limit of a sequence of functions
\[f(x) = \lim_{n \to \infty} f_n(x), \]
for \(x \in (x_0 - p, x_0 + p) \) and where

\[
f_n(x) = \sum_{m=0}^{n} a_m(x - x_0)^m.
\]

Example 5

For example, we have

\[
f(x) = \frac{1}{1-x} = \sum_{m=0}^{\infty} x^m.
\]

Question 6. This concept begs a number of questions:

1. Is \(f \) continuous?

2. Is \(f \) differentiable, and does \(f' = \lim_{n \to \infty} f'_n \)?

3. If 1. is true, does

\[
\int_a^b f = \lim_{n \to \infty} \int_a^b f_n?
\]

These questions will be the key motivator for the last section of this course.

Pointwise and Uniform Convergence

We now consider a setting far more general than power series.

Definition 7 (Pointwise Convergence)

For \(n \in \mathbb{N} \), let \(f_n : S \to \mathbb{R} \). Let \(f : S \to \mathbb{R} \). We say that \(\{f_n\} \) converges pointwise to \(f \) if for all \(x \in S \),

\[
\lim_{n \to \infty} f_n(x) = f(x).
\]

Let’s consider some examples.

1. Let \(f_n(x) = x^n \) on \([0,1]\). Then,

\[
\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}.
\]

Thus, \(\{f_n\} \) converges to the above pointwise function. Hence, notice that a sequence of continuous functions may not converge pointwise to a continuous function!

2. Let \(f_n(x) = \sum_{m=0}^{n} x^m \) for \(x \in (-1,1) \). Then,

\[
\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sum_{m=0}^{n} x^m = \frac{1}{1 - x}.
\]

Hence, pointwise, this sequence converges to its power series (see the above example).

3. Let \(f_n(x) : [0,1] \to \mathbb{R} \) be defined by

\[
f_n(x) = \begin{cases} 4n^2x & x \in [0, \frac{1}{2n}] \\ 4n - 4n^2x & x \in \left[\frac{1}{2n}, \frac{1}{n} \right] \\ 0 & x \in \left[\frac{1}{n}, 1 \right] \end{cases}.
\]

We can picture this sequence (on the next page)
Then, \(\lim_{n \to \infty} f_n(0) = \lim_{n \to \infty} 0 = 0 \). Let \(x \in (0, 1] \). Let \(N \in \mathbb{N} \) such that \(\frac{1}{N} < x \). Then, for all \(n \geq N \),

\[
f_n(x) = 0.
\]

Therefore,

\[
\{f_n(x)\} = f_1(x), \ldots, f_{N-1}(x), 0, 0, 0, \ldots
\]

Hence, \(\lim_{n \to \infty} f_n(x) = 0 \) for all \(x \in [0, 1] \). Thus, \(\{f_n\} \) converges pointwise to \(f(x) = 0 \) on \([0, 1]\).

Definition 8 (Uniform Convergence)

For \(n \in \mathbb{N} \), let \(f_n : S \to \mathbb{R} \), and let \(f : S \to \mathbb{R} \). Then, we say \(f_n \) converges to \(f \) uniformly or **converges uniformly to** \(f \) if \(\forall \epsilon > 0 \ \exists M \in \mathbb{N} \) such that for all \(n \geq M \ \forall x \in S \),

\[
|f_n(x) - f(x)| < \epsilon
\]

Theorem 9

If \(f_n : S \to \mathbb{R}, f : S \to \mathbb{R} \), and \(f_n \to f \) uniformly, then \(f_n \to f \) pointwise.

Proof: Let \(c \in S \) and let \(\epsilon > 0 \). Then, \(f_n \to f \) uniformly implies that there exists \(M_0 \in \mathbb{N} \) such that for all \(n \geq M, \forall x \in S, |f_n(x) - f(x)| < \epsilon \). Choose \(M = M_0 \). Then, \(\forall n \geq M \),

\[
|f_n(c) - f(c)| < \epsilon.
\]

Thus, \(\lim_{n \to \infty} f_n(c) = f(c) \) for all \(c \in S \), and therefore \(f_n \to f \) pointwise. \(\square \)