18.100A: Complete Lecture Notes

Lecture 24:

Uniform Convergence, the Weierstrass M-Test, and Interchanging Limits

Theorem 1

Let $f_{n}(x)=x^{n}$, and let $f(x)=\left\{\begin{array}{ll}0 & x \in[0,1) \\ 1 & x=1\end{array}\right.$.

1. $\forall 0<b<1, f_{n} \rightarrow f$ uniformly on $[0, b]$.
2. f_{n} does not converge to f uniformly on $[0,1]$.

Proof:

1. Let $\epsilon>0$. Since $b \in(0,1), b^{n} \rightarrow 0$. Therefore, $\exists M_{0} \in \mathbb{N}$ such that for all $n \geq M_{0}, b^{n}<\epsilon$. Choose $M=M_{0}$. Then, $\forall n \geq M, \forall x \in[0, b]$,

$$
\left|f_{n}(x)-f(x)\right|=\left|f_{n}(x)\right|=x^{n} \leq b^{n}<\epsilon
$$

Thus, $f_{n} \rightarrow f$ uniformly on $[0, b]$.
Before proving the other part, we first note the following negation:
Negation 2 (Not Uniformly Convergent)
$f_{n}: S \rightarrow \mathbb{R}$ does not converge to $f: S \rightarrow \mathbb{R}$ uniformly if $\exists \epsilon_{0}>0$ such that $\forall M \in \mathbb{N}, \exists n \geq M$ and $\exists x \in S$ with $\left|f_{n}(x)-f(x)\right| \geq \epsilon_{0}$.
2. Hence, for our example, choose $\epsilon_{0}=\frac{1}{4}$. Let $M \in \mathbb{N}$ and choose $x=\left(\frac{1}{2}\right)^{\frac{1}{M}} \in(0,1)$. Thus,

$$
\left|f_{M}(x)-f(x)\right|=f_{M}(x)=\frac{1}{2}>\epsilon_{0}
$$

Theorem 3 (Weierstrass M-test)
let $f_{j}: S \rightarrow \mathbb{R}$ and suppose $\exists M_{j}>0$ such that
a) $\forall x \in S,\left|f_{j}(x)\right| \leq M_{j}$.
b) $\sum_{j=1}^{\infty} M_{j}$ converges.

Then,

1. $\forall x \in S, \sum_{j=1}^{\infty} f_{j}(x)$ converges absolutely.
2. Let $f(x)=\sum_{j=1}^{\infty} f_{j}(x)$ for $x \in S$. Then,

$$
\sum_{j=1}^{n} f_{j} \rightarrow f \text { uniformly on } S
$$

Proof:

1. The first part follows from a), b), and the Comparison Test.
2. Let $\epsilon>0$. Since $\sum M_{j}$ converges, $\exists N_{0} \in \mathbb{N}$ such that $\forall n \geq N_{0}$,

$$
\sum_{j=n+1}^{\infty} M_{j}=\left|\sum_{j=1}^{\infty} M_{j}-\sum_{j=1}^{n} M_{j}\right|<\epsilon .
$$

Choose $N=N_{0}$. Then, for all $n \geq N$ and $\forall x \in S$,

$$
\begin{aligned}
\left|f(x)-\sum_{j=1}^{n} f_{j}(x)\right| & =\left|\sum_{j=n+1}^{\infty} f_{j}(x)\right| \\
& \leq \sum_{j=n+1}^{\infty}\left|f_{j}(x)\right| \\
& \leq \sum_{j=n+1}^{\infty} M_{j}<\epsilon .
\end{aligned}
$$

Thus, $\sum_{j=1}^{n} f_{j} \rightarrow f$ uniformly on S.

Interchange of Limits

Remark 4. In general, limits cannot be interchanged.

Example 5

For instance, consider the following example:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \frac{n / k}{n / k+1}=\lim _{n \rightarrow \infty} \frac{0}{0+1}=0 \\
& \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{n / k}{n / k+1}=\lim _{k \rightarrow \infty} 1=1
\end{aligned}
$$

Question 6. Hence, we ask three questions about interchanging limits:

1. If $f_{n}: S \rightarrow \mathbb{R}, f_{n}$ continuous and $f_{n} \rightarrow f$ pointwise or uniform, then is f continuous?
2. If $f_{n}:[a, b] \rightarrow \mathbb{R}$, f_{n} differentiable, and $f_{n} \rightarrow f$ with $f_{n}^{\prime} \rightarrow g$, then is f differentiable and does $g=f^{\prime}$?
3. If $f_{n}:[a, b] \rightarrow \mathbb{R}$, with f_{n} and f continuous such that $f_{n} \rightarrow f$, then does

$$
\int_{a}^{b} f_{n}=\int_{a}^{b} f ?
$$

The answer to the above questions are all yes, if the convergence is uniform.
Question 7. What if the convergence is only pointwise?
If convergence is only pointwise, the answer to the above questions are all no, which we will show next time.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

