### 18.100A: Complete Lecture Notes

## Lecture 25:

Power Series and the Weierstrass Approximation Theorem

Last time, we asked three questions about interchanging limits:
Question 1. Hence, we ask three questions about interchanging limits:

1. If $f_{n}: S \rightarrow \mathbb{R}, f_{n}$ continuous and $f_{n} \rightarrow f$ pointwise or uniform, then is $f$ continuous?
2. If $f_{n}:[a, b] \rightarrow \mathbb{R}, f_{n}$ differentiable, and $f_{n} \rightarrow f$ with $f_{n}^{\prime} \rightarrow g$, then is $f$ differentiable and does $g=f^{\prime}$ ?
3. If $f_{n}:[a, b] \rightarrow \mathbb{R}$, with $f_{n}$ and $f$ continuous such that $f_{n} \rightarrow f$, then does

$$
\int_{a}^{b} f_{n}=\int_{a}^{b} f ?
$$

The answer to the above questions are all no, if the convergence is pointwise as seen by the following counterexamples:

1. Let $f_{n}(x)=x^{n}$ on $[0,1]$ is continuous $\forall n$. As we noted earlier, $f_{n}(x) \rightarrow f(x)=\left\{\begin{array}{ll}0 & x \in[0,1) \\ 1 & x=1\end{array}\right.$. Notice that $f$ is not continuous.
2. Let $f_{n}(x)=\frac{x^{n+1}}{n+1}$ on $[0,1]$. Then, $f_{n} \rightarrow 0$ pointwise on $[0,1]$. However,

$$
f_{n}^{\prime}(x) \rightarrow g(x)=\left\{\begin{array}{ll}
0 & x \in[0,1) \\
1 & x=1
\end{array} .\right.
$$

Thus, $g(x) \neq(0)^{\prime}=0$ at $x=1$.
3. Consider the functions

$$
f_{n}(x)= \begin{cases}4 n^{2} x & x \in\left[0, \frac{1}{2 n}\right] \\ 4 n-4 n^{2} x & x \in\left[\frac{1}{2 n}, \frac{1}{n}\right] \\ 0 & x \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

as described in the previous lecture. Then, $f_{n}(x) \rightarrow 0$ pointwise on $[0,1]$ as we showed last time. However,

$$
\int_{0}^{1} f_{n}=\frac{1}{2}(\text { base })(\text { height })=\frac{1}{2 n} \cdot 2 n=1 \nrightarrow 0=\int_{0}^{1} 0 .
$$

We now prove that the answer to the three questions above is yes if convergence is uniform.

## Theorem 2

If $f_{n}: S \rightarrow \mathbb{R}$ is continuous for all $n, f: S \rightarrow \mathbb{R}$, and $f_{n} \rightarrow f$ uniformly, then $f$ is continuous.

Proof: Let $c \in S$ and let $\epsilon>0$. Since $f_{n} \rightarrow f$ uniformly, $\exists M \in \mathbb{N}$ such that $\forall n \geq M, \forall y \in S$,

$$
\left|f_{n}(y)-f(y)\right|<\frac{\epsilon}{3} .
$$

Since $f_{M}: S \rightarrow \mathbb{R}$ is continuous, $\exists \delta_{0}>0$ such that $\forall|x-c|<\delta_{0}$,

$$
\left|f_{M}(x)-f_{M}(c)\right|<\frac{\epsilon}{3}
$$

Choose $\delta=\delta_{0}$. If $|x-c|<\delta$, then

$$
\begin{aligned}
|f(x)-f(c)| & \leq\left|f(x)+f_{M}(x)\right|+\left|f_{M}(c)-f(c)\right|+\left|f_{M}(x)-f_{M}(c)\right| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

## Theorem 3

If $f_{n}:[a, b] \rightarrow \mathbb{R}$ is continuous for all $n, f:[a, b] \rightarrow \mathbb{R}$ and $f_{n} \rightarrow f$ uniformly, then

$$
\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f
$$

Proof: Let $\epsilon>0$. Since $f_{n} \rightarrow f$ uniform, $\exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}, \forall x \in[a, b]$,

$$
\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{b-a}
$$

Then, for all $n \geq M=M_{0}$, we have

$$
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right| \leq \int_{a}^{b}\left|f_{n}-f\right|<\int_{a}^{b} \frac{\epsilon}{b-a}=\epsilon
$$

Remark 4. Notationally, this states that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}=\int_{a}^{b} f
$$

## Theorem 5

If $f_{n}:[a, b] \rightarrow \mathbb{R}$ is continuously differentiable, $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$, and

$$
\begin{aligned}
& f_{n} \rightarrow f \text { pointwise } \\
& f_{n}^{\prime} \rightarrow g \text { uniformly }
\end{aligned}
$$

then $f$ is continuously differentiable and $g=f^{\prime}$.

Proof: By the FTC, $\forall n \forall x \in[a, b]$,

$$
f_{n}(x)-f_{n}(a)=\int_{a}^{x} f_{n}^{\prime}
$$

Thus, by the previous two theorems,

$$
\begin{aligned}
f(x)-f(a) & =\lim _{n \rightarrow \infty}\left(f_{n}(x)-f_{n}(a)\right) \\
& =\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}^{\prime} \\
& =\int_{a}^{x} g .
\end{aligned}
$$

Therefore, $f(x)=f(a)+\int_{a}^{x} g$. Thus, by the FTC, $f$ is differentiable and $f^{\prime}=\left(\int_{a}^{x} g\right)^{\prime}=g$.
We now return back to our study of power series, answering some questions we asked at the beginning of Lecture 23.

## Theorem 6

Let $\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$ be a power series of radius of convergence $p \in(0, \infty]$. Then, $\forall r \in(0, p), \sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$ converges uniformly on $\left[x_{0}-r, x_{0}+r\right]$.

Proof: Let $r \in[0, p)$. Then, $\forall j \in \mathbb{N} \cup\{0\}, \forall x \in\left[x_{0}-r, x_{0}+r\right]$,

$$
\left|a_{j}\left(x-x_{0}\right)^{j}\right| \leq\left|a_{j}\right| r^{j}=: M_{j} .
$$

Now,

$$
\lim j \rightarrow \infty M_{j}^{1 / j}=\lim _{j \rightarrow \infty}\left|a_{j}\right|^{1 / j} r= \begin{cases}\frac{r}{p} & p<\infty \\ 0 & p=\infty\end{cases}
$$

since $p^{-1}=\lim _{j \rightarrow \infty}\left|a_{j}\right|^{1 / j}$. Since $r<p$, we have

$$
\lim _{j \rightarrow \infty} M_{j}^{1 / j}<1 \Longrightarrow \sum_{j=0}^{\infty} M_{j} \text { converges. }
$$

By the Weierstrass M-test, it follows that $\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$ converges uniformly on $\left[x_{0}-r, x_{0}+r\right]$.

## Theorem 7

Let $\sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$ be a power series with radius of convergence $p \in(0, \infty]$. Then,

1. $\forall c \in\left(x_{0}-p, x_{0}+p\right), \sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}$ is differentiable at $c$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=0}^{\infty} a_{j}\left(x-x_{0}\right)^{j}=\sum_{j=0}^{\infty} j a_{j}\left(x-x_{0}\right)^{j-1} .
$$

2. $\forall a, b$ such that $x_{0}-p<a<b<x_{0}+p$,

$$
\int_{a}^{b} \sum_{j=0}^{\infty} a_{J}\left(x-x_{0}\right)^{j} \mathrm{~d} x=\sum_{j=0}^{\infty} a_{j}\left(\frac{\left(b-x_{0}\right)^{j+1}}{j+1}-\frac{\left(a-x_{0}\right)^{j+1}}{j+1}\right)
$$

Remark 8. Since

$$
\lim _{j \rightarrow \infty}\left((j+1)\left|a_{j+1}\right|\right)^{1 / j}=\lim _{j \rightarrow \infty}\left(\left((j+1)\left|a_{j+1}\right|^{1 /(j+1)}\right)^{(j+1) / j}=\lim _{k \rightarrow \infty}\left|a_{k}\right|^{1 / k}=p\right.
$$

1. implies $\sum a_{j}\left(x-x_{0}\right)^{j}$ is infinitely differentiable and

$$
k!a_{k}=\left.\left(\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \sum a_{j}\left(x-x_{0}\right)^{j}\right)\right|_{x=x_{0}}
$$

## Weierstrass Approximation Theorem

Remark 9. This theorem essentially states: "Every continuous function on $[a, b]$ is almost a polynomial."

Theorem 10 (Weierstrass Approximation Theorem)
If $f \in C([a, b])$, there exists a sequence of polynomials $\left\{P_{n}\right\}$ such that

$$
P_{n} \rightarrow f \text { uniformly on }[a, b] .
$$

The idea of the proof is to choose a suitable sequence of polynomials $\left\{Q_{n}\right\}_{n}$ such that $Q_{n}$ behaves like a 'Dirac delta function' as ntoo. Then, the sequence of polynomials $P_{n}(x)=\int_{0}^{1} Q_{n}(x-t) f(t) \mathrm{d} t$ converges to $f(x)$ as $n \rightarrow \infty$. We will prove this momentarily, but first we need to do the ground work.

Notice that we only need to consider $a=0$ and $b=1$, with $f(0)=f(1)=0$. If we prove this case, then for a general $\tilde{f} \in C([0,1]), \exists$ a sequence of polynomials

$$
P_{n}(x) \rightarrow \tilde{f}(x)-\tilde{f}(0)-x(\tilde{f}(1)-\tilde{f}(0)) \text { uniformly. }
$$

Hence,

$$
\tilde{P}_{n}(x)=P_{n}(x)+\tilde{f}(0)+x(\tilde{f}(1)-\tilde{f}(0)) \rightarrow \tilde{f}(x) \text { uniformly. }
$$

## Theorem 11

Let $c_{n}:=\left(\int_{-1}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x\right)^{-1}>0$, and let

$$
Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}
$$

Then,

1. $\forall n, \int_{-1}^{1} Q_{n}=1$.
2. $\forall n, Q_{n}(x) \geq 0$ on $[-1,1]$, and
3. $\forall \delta \in(0,1), Q_{n} \rightarrow 0$ uniformly on $\delta \leq|x| \leq 1$.

Before we prove this, here is a picture of $Q_{n}$ :


## Proof:

2. Immediately clear.
3. $\int_{-1}^{1} Q_{n}=c_{n} \int_{-1}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x=1$ by definition of $c_{n}$.
4. We first estimate $c_{n}$. We have for all $n \in \mathbb{N}$ and $\forall x \in[-1,1]$,

$$
\left(1-x^{2}\right)^{n} \geq 1-n x^{2}
$$

We proved this way earlier in the course by induction, but it also follows from the calculus we have proven as

$$
g(x)=\left(1-x^{2}\right)^{n}-\left(1-n x^{2}\right)
$$

satisfies $g(0)=0$, and

$$
g^{\prime}(x)=n \cdot 2 x\left(1-\left(1-x^{2}\right)^{n-1}\right) \geq 0
$$

in $[0,1]$. Thus, $g(x) \geq 0$ by the MVT.
Then,

$$
\begin{aligned}
\frac{1}{c_{n}} & =\int_{-1}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x \\
& =2 \int_{0}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x \\
& >2 \int_{0}^{1 / \sqrt{n}}\left(1-x^{2}\right)^{n} \mathrm{~d} x \\
& \geq 2 \int_{0}^{1 / \sqrt{n}}\left(1-n x^{2}\right) \mathrm{d} x \\
& =2\left(\frac{1}{\sqrt{n}}-\frac{n}{3} \cdot n^{-3 / 2}\right) \\
& =\frac{4}{3} \sqrt{n}>\sqrt{n}
\end{aligned}
$$

Therefore, $c_{n}<\sqrt{n}$.
Let $\delta>0$. We note $\lim _{n \rightarrow \infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}=0$. Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\sqrt{n}\left(1-\delta^{2}\right)^{n}\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(n^{1 / n}\right)^{1 / 2}\left(1-\delta^{2}\right) \\
& =1-\delta^{2}<1
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \sqrt{n}\left(1-\delta^{2}\right)^{n}=0
$$

Let $\epsilon>0$, and choose $M \in \mathbb{N}$ such that for all $n \geq M$,

$$
\sqrt{n}\left(1-\delta^{2}\right)^{n}<\epsilon
$$

Then, $\forall n \geq M$ and $\forall \delta \leq|x| \leq 1$,

$$
\left|c_{n}\left(1-x^{2}\right)^{n}\right|<\sqrt{n}\left(1-x^{2}\right)^{n} \leq \sqrt{n}\left(1-\delta^{2}\right)^{n}<\epsilon
$$

We now prove the Weierstrass Approximation Theorem.
Proof: Suppose $f \in C([0,1]), f(0)=f(1)=0$. We extend $f$ to an element of $C(\mathbb{R})$ by setting $f(x)=0$ for all $x \notin[0,1]$. We furthermore define

$$
\begin{aligned}
P_{n}(x) & =\int_{0}^{1} f(t) Q_{n}(t-x) \mathrm{d} t \\
& =\int_{0}^{1} f(t) c_{n}\left(1-(t-x)^{2}\right)^{n} \mathrm{~d} t
\end{aligned}
$$

Note that $P_{n}(x)$ is in fact a polynomial.

Furthermore, observe that for $x \in[0,1]$,

$$
\begin{aligned}
P_{n}(x) & =\int_{0}^{1} f(t) Q_{n}(t-x) \mathrm{d} t \\
& =\int_{-x}^{1-x} f(x+t) Q_{n}(t) \mathrm{d} t \\
& =\int_{-1}^{1} f(x+t) Q_{n}(t) \mathrm{d} t
\end{aligned}
$$

The second equality is true by a change of variable, and the last equality is true as $f(x+t)=0$ for $t \notin[-x, 1-x]$.
We now prove $P_{n} \rightarrow f$ uniformly on $[0,1]$. Let $\epsilon>0$. Since $f$ is uniformly continuous on $[0,1], \exists \delta>0$ such that $\forall|x-y| \leq \delta,|f(x)-f(y)|<\frac{\epsilon}{2}$. Let $C=\sup \{f(x) \mid x \in[0,1]\}$, which exists by the Min/Max theorem i.e. the EVT. Choose $M \in \mathbb{N}$ such that $\forall n \geq M$,

$$
\sqrt{n}\left(1-\delta^{2}\right)^{n}<\frac{\epsilon}{8 C}
$$

Thus, $\forall n \geq M, \forall x \in[0,1]$, by the previous theorem,

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| & =\left|\int_{-1}^{1}(f(x-t)-f(t)) Q_{n}(t) \mathrm{d} t\right| \\
& \leq \int_{-1}^{1}|f(x-t)-f(x)| Q_{n}(t) \mathrm{d} t \\
& \leq \int_{|t| \leq \delta}|f(x-t)-f(x)| Q_{n}(t) \mathrm{d} t+\int_{\delta \leq|t| \leq 1}|f(x-t)-f(x)| Q_{n}(t) \mathrm{d} t \\
& \leq \frac{\epsilon}{2} \int_{|t| \leq \delta} Q_{n}(t) \mathrm{d} t+\sqrt{n}\left(1-\delta^{2}\right)^{n} \int_{\| \delta|\leq|t| \leq 1} 2 C \\
& <\frac{\epsilon}{2}+4 C \sqrt{n}\left(1-\delta^{2}\right)^{n} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

In the last minute of the course, Casey Rodriguez stated: "This was quite an experience; teaching to an empty room. I hope you did get something out of this class. Unfortunately I wasn't able to meet a lot of you, and that's one of the best parts of teaching...."

MIT OpenCourseWare
https://ocw.mit.edu

### 18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

