18.100A: Complete Lecture Notes

Lecture 3:
Cantor’s Remarkable Theorem

and the Rationals’ Lack of the Least Upper Bound Property

Question 1. Is anything bigger than N?
If Ais aset then P(A) = {B| B C A}. Here are a few examples:
1. A =0 then P(A) = {0}.
2. A= {1}, then P(A) = {0,{1}}.
3. A={1,2}, then P(A) = {0, {1},{2},{1,2}}.
In general, if |A| = n then |[P(A)| = 2". This is why we call P(A) the power set of A.

Theorem 2 (Cantor)
If A is a set, then |A] < [P(A4)].

Remark 3. Therefore,
N <|P(N)| < [P(P(N))| < ....

Hence, there are an infinite number of infinite sets.

Proof: Define the function f : A — P(A) by f(z) = {z}. Then, [ is I-1- as if {z} = {y} = =z =y.
Thus, |A| < [P(A)]. To finish the proof now all we need to show is that |A| # |P(A4)|. We will do so through
contradiction. Suppose that |[A| = |P(A)|. Then, there exists a surjection g : A — P(A). Let

B:={zxecA|x¢g(x)} € P(A).
Since g is surjective, there exists a b € A such that g(b) = B. There are two cases:

1. b € B. If this is the case, then b ¢ g(b) =B = b ¢ B.

2. b ¢ B. If this is the case, then b ¢ g(b) = B = b€ B.

In either case we obtain a contradiction. Thus, g is not surjective = |A| # |P(A)]. O

Remark 4. This is another proof method: casework. If the conclusion for every case is true, then the conclusion

must be true.

Corollary 5
For alln e NU {0}, n < 2.

Remark 6. This can also be shown by induction, see Assignment 1.



Real Numbers

Remark 7. In a sense, to be made precise, the set of real numbers is the unique set with all of the algebraic and
ordering properties of the rational numbers, but none of the holes.

Problem 8

Now let’s try to precisely describe R.

We will start by stating what our end result will be, and then we will derive it:

Theorem 9 (Real Numbers (R))

There exists a unique ordered field containing Q with the least upper bound property. We denote this
field by R.

Ordered Sets & Fields

Definition 10 (Ordered set)

An ordered set is a set S with a relation < called an "ordering" such that

1. Va,y € S either x <y, y <z, or z = .

2. If x <yand y < z then z < z.

Here are a few examples and one non-example:

e 7 is an ordered set, with the relation that m >n <— m —n € N.

m

n"

« Q is an ordered set, with the relation that p > ¢ <= 3m,n € N such that p — ¢ =
+ Q@ x Q is an ordered set with the relation (q,r) > (s,t) <= ¢>sorg=s and r > t.

+ Consider the set P(N). Let A, B € P(N) and let A < B if A C B. This is NOT an ordered set— it doesn’t
satisfy the first property of an ordered set.

Definition 11 (Bounded Above/Below)
Let S be an ordered set and let £ C S. Then,

1. If there exists a b € S such that x < b for all x € E, then E is bounded above and b is an vocab of F.

2. If dc € S such that x > ¢ for all x € F, then E is bounded below and c¢ is a lower bound of FE.

From here, there are some very important definitions in real analysis. We say that by is the least upper
bound, or the supremum of F if

A) by is an upper bound for E and

B) if b is an upper bound for E then by < b.

We denote this as by = sup E. Similarly, we say that ¢q is the greatest lower bound, or the infinimum of F if
A) ¢ is a lower bound for E and

B) if ¢ is a lower bound for E then ¢ < cj.

We denote this as ¢y = inf F.



Example 12

Here are a few examples of infimums and supremums:
e S=Zand E={-2,-1,0,1,2}. Then, inf E = —2 and sup F = 2.
» But, note that the supremum nor the infimum need to be in E. Consider the sets S = Q and
E={qeQ|0<q¢g<1}.

Then, inf E=0€ E,but supE =1¢ E.

» Furthermore, neither the supremum nor the infimum need exist. Consider the sets S = Z and E = N.

Then, inf E = 1, but sup E does not exist as there is not an integer greater than all natural numbers.

Definition 13 (Least Upper Bound Property)
An ordered set S has the least upper bound property if every £ C S which is nonempty and bounded above

has a supremum in S.

One example of such a set is
—-N={-1,-2.-3.... }.

Then, E C S is bounded above if and only if —F C N is bounded below. By the well-ordering principle, —F has a
least element * € —F, and thus —x = sup E.

We will now show that Q does not have the least upper bound property.

Theorem 14
If r € Q and
z=sup{geQ|q>0,¢> <2}

then z > 0 and 22 = 2.

Proof: Let E equal the set on the right hand side, and suppose « € Q such that x = sup E. Then, since 1 € £
and x is an upper bound for £, 1 <z = z > 0.

We now prove that 22 > 2. Suppose that 22 < 2. Define h = min {%, 2(22;”:1)} < 1. Then, if 22 < 2 then h > 0.
We now prove that x + h € E. Indeed,

(x +h)? =2 + 2zh + h?
<x? +h2z+1)

as h < 1. Hence

20+ 1
h)? < z? 2z~
(z+h)" <27+ (2 -7 222 + 1)
2 — g2
.2
2—2
<24+ —
+ 2
=2.

Therefore, t +h € F and © + h > * = x is not an upper bound for E. Therefore, z # sup £ which is a

contradiction. Hence, 22 > 2.



We now prove that 22 < 2. Suppose 22 > 2. Let h = ”‘/’22;2 Hence, if 22 > 2 then h > 0 and  — h > 0. We will

show that z — h is an upper bound for E. We have

(x —h)* = 2? — 2xh + h?
=2% — (2 —2)+h?
=2+ h?

> 2.
Let ¢ € E. Then, ¢> <2 < (z — h)? = (x — h)? — ¢*> > 0. Hence,
((z=h)+q)((z—h)+q) >0 = (x—h)—qg>0.

Thus, for all g € E, g <z —h <z = x # sup E. This is a contradiction. Therefore, 22 = 2. O

Theorem 15
The set E = {q € Q| q >0 and ¢*> < 2} does not have a supremum in Q.

Proof: Suppose there exists an = € Q such that = sup E. Then, by our previous theorem, z? = 2. In particular,
note that > 1 as otherwise x <1 = 2 = 22 < 12. Thus, 3m,n € N such that m > n and = = “t. Therefore,
dn € N such that nz € N. Let

S={keN]|kreN}

Then, S # () since n € S. By the well-ordering property of N, S has a least element kg € S. Let ky = koz — ko € Z.
Then, k; = ko(x — 1) > 0 since kg € N and = > 1. Therefore, k; € N. Now 2?2 = 2 = 1z < 2, as otherwise
22> 4> 2. Thus, k1 = ko(z — 1) < ko(2 — 1) = ko. So, k1 € Nand k1 < kg = k1 ¢ S as ko is the least element
of S. But,

xky = kox?® —xko = 2ko —axko = ko — k1 €N = k; € S.

This is a contradiction. Thus, Az € Q such that x = sup E. O

Q is an example of a field, which we will start to discuss in the next lecture.
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