18.100A: Complete Lecture Notes

Lecture 3:

Cantor's Remarkable Theorem and the Rationals' Lack of the Least Upper Bound Property

Question 1. Is anything bigger than \mathbb{N} ?

If A is a set then $\mathcal{P}(A) = \{B \mid B \subset A\}$. Here are a few examples:

- 1. $A = \emptyset$ then $\mathcal{P}(A) = \{\emptyset\}$.
- 2. $A = \{1\}$, then $\mathcal{P}(A) = \{\emptyset, \{1\}\}$.
- 3. $A = \{1, 2\}, \text{ then } \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$

In general, if |A| = n then $|\mathcal{P}(A)| = 2^n$. This is why we call $\mathcal{P}(A)$ the power set of A.

Theorem 2 (Cantor)

If A is a set, then $|A| < |\mathcal{P}(A)|$.

Remark 3. Therefore,

$$\mathbb{N} < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$$

Hence, there are an infinite number of infinite sets.

Proof: Define the function $f: A \to \mathcal{P}(A)$ by $f(x) = \{x\}$. Then, f is 1-1- as if $\{x\} = \{y\} \implies x = y$. Thus, $|A| \leq |\mathcal{P}(A)|$. To finish the proof now all we need to show is that $|A| \neq |\mathcal{P}(A)|$. We will do so through contradiction. Suppose that $|A| = |\mathcal{P}(A)|$. Then, there exists a surjection $g: A \to \mathcal{P}(A)$. Let

$$B := \{ x \in A \mid x \notin g(x) \} \in \mathcal{P}(A).$$

Since g is surjective, there exists a $b \in A$ such that g(b) = B. There are two cases:

- 1. $b \in B$. If this is the case, then $b \notin g(b) = B \implies b \notin B$.
- 2. $b \notin B$. If this is the case, then $b \notin g(b) = B \implies b \in B$.

In either case we obtain a contradiction. Thus, g is not surjective $\implies |A| \neq |\mathcal{P}(A)|$.

Remark 4. This is another proof method: casework. If the conclusion for every case is true, then the conclusion must be true.

Corollary 5

For all $n \in \mathbb{N} \cup \{0\}$, $n < 2^n$.

Remark 6. This can also be shown by induction, see Assignment 1.

Real Numbers

Remark 7. In a sense, to be made precise, the set of real numbers is the unique set with all of the <u>algebraic</u> and ordering properties of the rational numbers, but none of the holes.

Problem 8

Now let's try to precisely describe \mathbb{R} .

We will start by stating what our end result will be, and then we will derive it:

Theorem 9 (Real Numbers (\mathbb{R}))

There exists a unique **ordered field** containing \mathbb{Q} with the **least upper bound property**. We denote this field by \mathbb{R} .

Ordered Sets & Fields

Definition 10 (Ordered set)

An ordered set is a set S with a relation < called an "ordering" such that

- 1. $\forall x, y \in S$ either x < y, y < x, or x = y.
- 2. If x < y and y < z then x < z.

Here are a few examples and one non-example:

- \mathbb{Z} is an ordered set, with the relation that $m > n \iff m n \in \mathbb{N}$.
- \mathbb{Q} is an ordered set, with the relation that $p>q\iff \exists m,n\in\mathbb{N}$ such that $p-q=\frac{m}{n}$.
- $\mathbb{Q} \times \mathbb{Q}$ is an ordered set with the relation $(q,r) > (s,t) \iff q > s$ or q = s and r > t.
- Consider the set $\mathcal{P}(\mathbb{N})$. Let $A, B \in \mathcal{P}(\mathbb{N})$ and let $A \prec B$ if $A \subset B$. This is **NOT** an ordered set—it doesn't satisfy the first property of an ordered set.

Definition 11 (Bounded Above/Below)

Let S be an ordered set and let $E \subset S$. Then,

- 1. If there exists a $b \in S$ such that $x \leq b$ for all $x \in E$, then E is bounded above and b is an <u>vocab</u> of E.
- 2. If $\exists c \in S$ such that $x \geq c$ for all $x \in E$, then E is bounded below and c is a lower bound of E.

From here, there are some very important definitions in real analysis. We say that b_0 is the **least upper** bound, or the supremum of E if

- A) b_0 is an upper bound for E and
- B) if b is an upper bound for E then $b_0 \leq b$.

We denote this as $b_0 = \sup E$. Similarly, we say that c_0 is the **greatest lower bound**, or the infinimum of E if

- A) c_0 is a lower bound for E and
- B) if c is a lower bound for E then $c < c_0$.

We denote this as $c_0 = \inf E$.

Example 12

Here are a few examples of infimums and supremums:

- $S = \mathbb{Z}$ and $E = \{-2, -1, 0, 1, 2\}$. Then, inf E = -2 and $\sup E = 2$.
- But, note that the supremum nor the infimum need to be in E. Consider the sets $S=\mathbb{Q}$ and

$$E = \{ q \in \mathbb{Q} \mid 0 \le q < 1 \}.$$

Then, inf $E = 0 \in E$, but $\sup E = 1 \notin E$.

• Furthermore, neither the supremum nor the infimum need exist. Consider the sets $S = \mathbb{Z}$ and $E = \mathbb{N}$. Then, inf E = 1, but sup E does not exist as there is not an integer greater than all natural numbers.

Definition 13 (Least Upper Bound Property)

An ordered set S has the least upper bound property if every $E \subset S$ which is nonempty and bounded above has a supremum in S.

One example of such a set is

$$-\mathbb{N} = \{-1, -2, -3, \dots\}.$$

Then, $E \subset S$ is bounded above if and only if $-E \subset \mathbb{N}$ is bounded below. By the well-ordering principle, -E has a least element $x \in -E$, and thus $-x = \sup E$.

We will now show that \mathbb{Q} does not have the least upper bound property.

Theorem 14

If $x \in \mathbb{Q}$ and

$$x = \sup\{q \in \mathbb{Q} \mid q > 0, q^2 < 2\}$$

then x > 0 and $x^2 = 2$.

Proof: Let E equal the set on the right hand side, and suppose $x \in \mathbb{Q}$ such that $x = \sup E$. Then, since $1 \in E$ and x is an upper bound for E, $1 \le x \implies x > 0$.

We now prove that $x^2 \ge 2$. Suppose that $x^2 < 2$. Define $h = \min\left\{\frac{1}{2}, \frac{2-x^2}{2(2x+1)}\right\} < 1$. Then, if $x^2 < 2$ then h > 0. We now prove that $x + h \in E$. Indeed,

$$(x+h)^2 = x^2 + 2xh + h^2$$

< $x^2 + h(2x+1)$

as h < 1. Hence

$$(x+h)^{2} \le x^{2} + (2-x^{2}) \cdot \frac{2x+1}{2(2x+1)}$$

$$= x^{2} + \frac{2-x^{2}}{2}$$

$$< 2 + \frac{2-2}{2}$$

$$= 2.$$

Therefore, $x + h \in E$ and $x + h > x \implies x$ is not an upper bound for E. Therefore, $x \neq \sup E$ which is a contradiction. Hence, $x^2 \geq 2$.

We now prove that $x^2 \le 2$. Suppose $x^2 > 2$. Let $h = \frac{x^2 - 2}{2x}$. Hence, if $x^2 > 2$ then h > 0 and x - h > 0. We will show that x - h is an upper bound for E. We have

$$(x - h)^{2} = x^{2} - 2xh + h^{2}$$

$$= x^{2} - (x^{2} - 2) + h^{2}$$

$$= 2 + h^{2}$$

$$> 2.$$

Let $q \in E$. Then, $q^2 < 2 < (x - h)^2 \implies (x - h)^2 - q^2 > 0$. Hence,

$$((x-h)+q)((x-h)+q) > 0 \implies (x-h)-q > 0.$$

Thus, for all $q \in E$, $q < x - h < x \implies x \neq \sup E$. This is a contradiction. Therefore, $x^2 = 2$.

Theorem 15

The set $E = \{q \in \mathbb{Q} \mid q > 0 \text{ and } q^2 < 2\}$ does not have a supremum in \mathbb{Q} .

Proof: Suppose there exists an $x \in \mathbb{Q}$ such that $x = \sup E$. Then, by our previous theorem, $x^2 = 2$. In particular, note that x > 1 as otherwise $x \le 1 \implies 2 = x^2 < 1^2$. Thus, $\exists m, n \in \mathbb{N}$ such that m > n and $x = \frac{m}{n}$. Therefore, $\exists n \in \mathbb{N}$ such that $nx \in \mathbb{N}$. Let

$$S = \{ k \in \mathbb{N} \mid kx \in \mathbb{N} \}.$$

Then, $S \neq \emptyset$ since $n \in S$. By the well-ordering property of \mathbb{N} , S has a least element $k_0 \in S$. Let $k_1 = k_0x - k_0 \in \mathbb{Z}$. Then, $k_1 = k_0(x-1) > 0$ since $k_0 \in \mathbb{N}$ and x > 1. Therefore, $k_1 \in \mathbb{N}$. Now $x^2 = 2 \implies x < 2$, as otherwise $x^2 > 4 > 2$. Thus, $k_1 = k_0(x-1) < k_0(2-1) = k_0$. So, $k_1 \in \mathbb{N}$ and $k_1 < k_0 \implies k_1 \notin S$ as k_0 is the least element of S. But,

$$xk_1 = k_0x^2 - xk_0 = 2k_0 - xk_0 = k_0 - k_1 \in \mathbb{N} \implies k_1 \in S.$$

This is a contradiction. Thus, $\not\exists x \in \mathbb{Q}$ such that $x = \sup E$.

 \mathbb{Q} is an example of a field, which we will start to discuss in the next lecture.

MIT OpenCourseWare https://ocw.mit.edu

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.