18.100A: Complete Lecture Notes

Lecture 3:
Cantor's Remarkable Theorem
and the Rationals' Lack of the Least Upper Bound Property

Question 1. Is anything bigger than \mathbb{N} ?
If A is a set then $\mathcal{P}(A)=\{B \mid B \subset A\}$. Here are a few examples:

1. $A=\emptyset$ then $\mathcal{P}(A)=\{\emptyset\}$.
2. $A=\{1\}$, then $\mathcal{P}(A)=\{\emptyset,\{1\}\}$.
3. $A=\{1,2\}$, then $\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.

In general, if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$. This is why we call $\mathcal{P}(A)$ the power set of A.

Theorem 2 (Cantor)

If A is a set, then $|A|<|\mathcal{P}(A)|$.

Remark 3. Therefore,

$$
\mathbb{N}<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<\ldots
$$

Hence, there are an infinite number of infinite sets.
Proof: Define the function $f: A \rightarrow \mathcal{P}(A)$ by $f(x)=\{x\}$. Then, f is $1-1-$ as if $\{x\}=\{y\} \Longrightarrow x=y$. Thus, $|A| \leq|\mathcal{P}(A)|$. To finish the proof now all we need to show is that $|A| \neq|\mathcal{P}(A)|$. We will do so through contradiction. Suppose that $|A|=|\mathcal{P}(A)|$. Then, there exists a surjection $g: A \rightarrow \mathcal{P}(A)$. Let

$$
B:=\{x \in A \mid x \notin g(x)\} \in \mathcal{P}(A)
$$

Since g is surjective, there exists a $b \in A$ such that $g(b)=B$. There are two cases:

1. $b \in B$. If this is the case, then $b \notin g(b)=B \Longrightarrow b \notin B$.
2. $b \notin B$. If this is the case, then $b \notin g(b)=B \Longrightarrow b \in B$.

In either case we obtain a contradiction. Thus, g is not surjective $\Longrightarrow|A| \neq|\mathcal{P}(A)|$.
Remark 4. This is another proof method: casework. If the conclusion for every case is true, then the conclusion must be true.

Corollary 5

For all $n \in \mathbb{N} \cup\{0\}, n<2^{n}$.

Remark 6. This can also be shown by induction, see Assignment 1.

Real Numbers

Remark 7. In a sense, to be made precise, the set of real numbers is the unique set with all of the algebraic and ordering properties of the rational numbers, but none of the holes.

Problem 8

Now let's try to precisely describe \mathbb{R}.

We will start by stating what our end result will be, and then we will derive it:

Theorem 9 (Real Numbers (\mathbb{R}))
There exists a unique ordered field containing \mathbb{Q} with the least upper bound property. We denote this field by \mathbb{R}.

Ordered Sets \& Fields

Definition 10 (Ordered set)

An ordered set is a set S with a relation < called an "ordering" such that

1. $\forall x, y \in S$ either $x<y, y<x$, or $x=y$.
2. If $x<y$ and $y<z$ then $x<z$.

Here are a few examples and one non-example:

- \mathbb{Z} is an ordered set, with the relation that $m>n \Longleftrightarrow m-n \in \mathbb{N}$.
- \mathbb{Q} is an ordered set, with the relation that $p>q \Longleftrightarrow \exists m, n \in \mathbb{N}$ such that $p-q=\frac{m}{n}$.
- $\mathbb{Q} \times \mathbb{Q}$ is an ordered set with the relation $(q, r)>(s, t) \Longleftrightarrow q>s$ or $q=s$ and $r>t$.
- Consider the set $\mathcal{P}(\mathbb{N})$. Let $A, B \in \mathcal{P}(\mathbb{N})$ and let $A \prec B$ if $A \subset B$. This is NOT an ordered set- it doesn't satisfy the first property of an ordered set.

Definition 11 (Bounded Above/Below)

Let S be an ordered set and let $E \subset S$. Then,

1. If there exists a $b \in S$ such that $x \leq b$ for all $x \in E$, then E is bounded above and b is an vocab of E.
2. If $\exists c \in S$ such that $x \geq c$ for all $x \in E$, then E is bounded below and c is a lower bound of E.

From here, there are some very important definitions in real analysis. We say that b_{0} is the least upper bound, or the supremum of E if
A) b_{0} is an upper bound for E and
B) if b is an upper bound for E then $b_{0} \leq b$.

We denote this as $b_{0}=\sup E$. Similarly, we say that c_{0} is the greatest lower bound, or the infinimum of E if
A) c_{0} is a lower bound for E and
B) if c is a lower bound for E then $c<c_{0}$.

We denote this as $c_{0}=\inf E$.

Example 12

Here are a few examples of infimums and supremums:

- $S=\mathbb{Z}$ and $E=\{-2,-1,0,1,2\}$. Then, $\inf E=-2$ and $\sup E=2$.
- But, note that the supremum nor the infimum need to be in E. Consider the sets $S=\mathbb{Q}$ and

$$
E=\{q \in \mathbb{Q} \mid 0 \leq q<1\} .
$$

Then, $\inf E=0 \in E$, but $\sup E=1 \notin E$.

- Furthermore, neither the supremum nor the infimum need exist. Consider the sets $S=\mathbb{Z}$ and $E=\mathbb{N}$. Then, $\inf E=1$, but $\sup E$ does not exist as there is not an integer greater than all natural numbers.

Definition 13 (Least Upper Bound Property)

An ordered set S has the least upper bound property if every $E \subset S$ which is nonempty and bounded above has a supremum in S.

One example of such a set is

$$
-\mathbb{N}=\{-1,-2 .-3 \ldots\}
$$

Then, $E \subset S$ is bounded above if and only if $-E \subset \mathbb{N}$ is bounded below. By the well-ordering principle, $-E$ has a least element $x \in-E$, and thus $-x=\sup E$.

We will now show that \mathbb{Q} does not have the least upper bound property.

Theorem 14

If $x \in \mathbb{Q}$ and

$$
x=\sup \left\{q \in \mathbb{Q} \mid q>0, q^{2}<2\right\}
$$

then $x>0$ and $x^{2}=2$.

Proof: Let E equal the set on the right hand side, and suppose $x \in \mathbb{Q}$ such that $x=\sup E$. Then, since $1 \in E$ and x is an upper bound for $E, 1 \leq x \Longrightarrow x>0$.

We now prove that $x^{2} \geq 2$. Suppose that $x^{2}<2$. Define $h=\min \left\{\frac{1}{2}, \frac{2-x^{2}}{2(2 x+1)}\right\}<1$. Then, if $x^{2}<2$ then $h>0$. We now prove that $x+h \in E$. Indeed,

$$
\begin{aligned}
(x+h)^{2} & =x^{2}+2 x h+h^{2} \\
& <x^{2}+h(2 x+1)
\end{aligned}
$$

as $h<1$. Hence

$$
\begin{aligned}
(x+h)^{2} & \leq x^{2}+\left(2-x^{2}\right) \cdot \frac{2 x+1}{2(2 x+1)} \\
& =x^{2}+\frac{2-x^{2}}{2} \\
& <2+\frac{2-2}{2} \\
& =2
\end{aligned}
$$

Therefore, $x+h \in E$ and $x+h>x \Longrightarrow x$ is not an upper bound for E. Therefore, $x \neq \sup E$ which is a contradiction. Hence, $x^{2} \geq 2$.

We now prove that $x^{2} \leq 2$. Suppose $x^{2}>2$. Let $h=\frac{x^{2}-2}{2 x}$. Hence, if $x^{2}>2$ then $h>0$ and $x-h>0$. We will show that $x-h$ is an upper bound for E. We have

$$
\begin{aligned}
(x-h)^{2} & =x^{2}-2 x h+h^{2} \\
& =x^{2}-\left(x^{2}-2\right)+h^{2} \\
& =2+h^{2} \\
& >2 .
\end{aligned}
$$

Let $q \in E$. Then, $q^{2}<2<(x-h)^{2} \Longrightarrow(x-h)^{2}-q^{2}>0$. Hence,

$$
((x-h)+q)((x-h)+q)>0 \Longrightarrow(x-h)-q>0
$$

Thus, for all $q \in E, q<x-h<x \Longrightarrow x \neq \sup E$. This is a contradiction. Therefore, $x^{2}=2$.

Theorem 15

The set $E=\left\{q \in \mathbb{Q} \mid q>0\right.$ and $\left.q^{2}<2\right\}$ does not have a supremum in \mathbb{Q}.

Proof: Suppose there exists an $x \in \mathbb{Q}$ such that $x=\sup E$. Then, by our previous theorem, $x^{2}=2$. In particular, note that $x>1$ as otherwise $x \leq 1 \Longrightarrow 2=x^{2}<1^{2}$. Thus, $\exists m, n \in \mathbb{N}$ such that $m>n$ and $x=\frac{m}{n}$. Therefore, $\exists n \in \mathbb{N}$ such that $n x \in \mathbb{N}$. Let

$$
S=\{k \in \mathbb{N} \mid k x \in \mathbb{N}\}
$$

Then, $S \neq \emptyset$ since $n \in S$. By the well-ordering property of \mathbb{N}, S has a least element $k_{0} \in S$. Let $k_{1}=k_{0} x-k_{0} \in \mathbb{Z}$. Then, $k_{1}=k_{0}(x-1)>0$ since $k_{0} \in \mathbb{N}$ and $x>1$. Therefore, $k_{1} \in \mathbb{N}$. Now $x^{2}=2 \Longrightarrow x<2$, as otherwise $x^{2}>4>2$. Thus, $k_{1}=k_{0}(x-1)<k_{0}(2-1)=k_{0}$. So, $k_{1} \in \mathbb{N}$ and $k_{1}<k_{0} \Longrightarrow k_{1} \notin S$ as k_{0} is the least element of S. But,

$$
x k_{1}=k_{0} x^{2}-x k_{0}=2 k_{0}-x k_{0}=k_{0}-k_{1} \in \mathbb{N} \Longrightarrow k_{1} \in S
$$

This is a contradiction. Thus, $\nexists x \in \mathbb{Q}$ such that $x=\sup E$.
\mathbb{Q} is an example of a field, which we will start to discuss in the next lecture.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

