18.100A: Complete Lecture Notes

Lecture 4:

The Characterization of the Real Numbers

Question 1. Last time we stated that \mathbb{Q} was an example of a field, but what is a field?

Definition 2 (Field)

A set F is a field if it has two operations: addition $(+)$ and multiplication (\cdot) with the following properties.
A1) If $x, y \in F$ then $x+y \in F$.
A2) (Commutativity) $\forall x, y \in F, x+y=y+x$.
A3) (Associativity) $\forall x, y, z \in F,(x+y)+z=x+(y+z)$.
A4) \exists an element $0 \in F$ such that $0+x=x=x+0$.
A5) $\forall x \in F, \exists y \in F$ such that $x+y=0$. We denote $y=-x$.
M1) If $x, y \in F$, then $x \cdot y \in F$.
M2) (Commutativity) $\forall x, y \in F, x \cdot y=y \cdot x$.
M3) (Associativity) $\forall x, y, z \in F,(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
M4) $\exists 1 \in F$ such that $1 \cdot x=x=x \cdot 1$ for all $x \in F$.
M5) $\forall x \in F \backslash\{0\}, \exists x^{-1}$ such that $x \cdot x^{-1}=1$.
D) (Distributativity) $\forall x, y, z \in F,(x+y) z=x z+y z$.

These may seem like trivial properties, but consider the following non-example: \mathbb{Z}. \mathbb{Z} fails M5)- multiplicative inverses do not exist in the integers.

Example 3

Here are two examples of fields:

1. $\mathbb{Z}_{2}=\{0,1\}$ where $1+1=0$.
2. $\mathbb{Z}_{3}=\{0,1,2\}$ with $c:=a+b(\bmod 3)$. In other words,

$$
2+1=3=0 \quad(\bmod 3) \quad \text { and } 2 \cdot 2=4=3+1=1 \quad(\bmod 3)
$$

Simple properties follow from the properties of a field!

Theorem 4

If $x \in F$ where F is a field, $0 x=0$.

Proof: If $x \in F$, then

$$
0=0 \cdot x-0 \cdot x=(0+0) \cdot x-0 \cdot x=0 \cdot x+0 \cdot x-0 \cdot x=0 \cdot x
$$

Definition 5 (Ordered field)

A field F is an ordered field if F is also an ordered set with ordering $<$ and
i) $\forall x, y, z \in F, x<y \Longrightarrow x+z<y+z$.
ii) If $x>0$ and $y>0$ then $x y>0$.

If $x>0$ we say x is positive, and if $x \geq 0$ we say x is non-negative.

Example 6

\mathbb{Q} is an ordered field.

A non-example would be \mathbb{Z}_{2}. For instance, consider $0<1$. If $0<1$, then $1+0<1+1=0 \Longrightarrow 1<0$ which is a contradiction. If $1<0$, then $0=1+1<0+1 \Longrightarrow 0<1$ which is a contradiction. Hence, \mathbb{Z}_{2} is not an ordered field.

Using the definition of an ordered field, one can easily prove all of the usual facts about inequalities.

Theorem 7

If $x>0$, then $-x<0$ (and vice versa).

Proof: If $x \in F$ and $x>0$, then by i),

$$
-x+x>-x \Longrightarrow 0>-x
$$

One can see Proposition 1.1.8 [L] for a list of other simple inequality facts.

Theorem 8

Let $x, y \in F$ where F is an ordered field. If $x>0$ and $y<0$ or $x<0$ and $y>0$, then $x y<0$.

Proof: Suppose $x>0$ and $y<0$. Then, $x>0$ and $-y>0$. Hence, $-x y=x(-y)>0$. Thus, $x y<0$. If $x<0$ and $y>0$, then $-x>0$ and $y>0 \Longrightarrow-x y=(-x) y>0 \Longrightarrow x y<0$.

Question 9. Is there a greatest lower bound property?
For an ordered field F, if F has the least upper bound property then F has a greatest lower bound property.

Theorem 10

Let F be an ordered field with the least upper bound property. If $A \subset F$ is nonempty and bounded below, then $\inf A$ exists in F.

Proof: Suppose $A \subset F$ is nonempty and bounded below, i.e. $\exists a \in F$ such that $\forall x \in A, a \leq x$. Let $B=\{-x \mid x \in A\}$. Then, $\forall x \in A,-x \leq-a \Longrightarrow-a$ is an upper bound for B. Since F has the least upper bound
property, $\exists c \in F$ such that $c=\sup B$. Then, $\forall x \in A,-x \leq c \Longrightarrow \forall x \in A,-c \leq x$. Hence, $-c$ is a lower bound for A. We have also shown that if a is a lower bound for A, then $-a$ is an upper bound for B. Therefore, $c \leq-a$ since $c=\sup B \Longrightarrow a \leq-c$. Hence, $-c$ is the greatest lower bound for A.

Real Numbers

Theorem 11

There exists a "unique" ordered field, labeled \mathbb{R}, such that $\mathbb{Q} \subset \mathbb{R}$ and \mathbb{R} has the least upper bound property.

One can construct \mathbb{R} using Dedekind cuts or as equivalence classes of Cauchy sequences. (We will define Cauchy sequences later in the course.)

Theorem 12

$\exists!r \in \mathbb{R}$ such that $r>0$ and $r^{2}=2$. In other words, $\sqrt{2} \in \mathbb{R}$ but $\sqrt{2} \notin \mathbb{Q}$.

Proof: Let $\tilde{E}=\left\{x \in \mathbb{R} \mid x>0\right.$ and $\left.x^{2}<2\right\}$. Then, since \tilde{E} is bounded above (by 2 for instance), we have that $r:=\sup \tilde{E}$ exists in \mathbb{R}. Then, one can show that $r>0$ and $r^{2}=2$. This is left as an exercise.

We now prove uniqueness. Suppose that there is a $\tilde{r}>0$ with $\tilde{r}^{2}=2$. Then, since $(r+\tilde{r})>0$,

$$
0=r^{2}-\tilde{r}^{2}=(r+\tilde{r})(r-\tilde{r}) \Longrightarrow r-\tilde{r}=0 \Longrightarrow r=\tilde{r}
$$

Remark 13. In Assignment 2 Exercise 7, you will show that $\sqrt[3]{2} \in \mathbb{R}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

