18.100A: Complete Lecture Notes

Lecture 4:

The Characterization of the Real Numbers

Question 1. Last time we stated that \mathbb{Q} was an example of a field, but what is a field?

 $\begin{array}{l} \textbf{Definition 2 (Field)}\\ A set F is a field if it has two operations: addition (+) and multiplication (\cdot) with the following properties.\\ A1) If <math>x, y \in F$ then $x + y \in F$. A2) $(Commutativity) \forall x, y \in F, x + y = y + x.\\ A3) <math>(Associativity) \forall x, y, z \in F, (x + y) + z = x + (y + z).\\ A4) \exists an element <math>0 \in F$ such that $0 + x = x = x + 0.\\ A5) \forall x \in F, \exists y \in F$ such that x + y = 0. We denote $y = -x.\\ M1)$ If $x, y \in F$, then $x \cdot y \in F$. M2) $(Commutativity) \forall x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z).\\ M3) <math>(Associativity) \forall x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z).\\ M4) \exists 1 \in F$ such that $1 \cdot x = x = x \cdot 1$ for all $x \in F.\\ M5) \forall x \in F \setminus \{0\}, \exists x^{-1}$ such that $x \cdot x^{-1} = 1.\\ D) (Distributativity) \forall x, y, z \in F, (x + y)z = xz + yz. \end{aligned}$

These may seem like trivial properties, but consider the following non-example: \mathbb{Z} . \mathbb{Z} fails M5)– multiplicative inverses do not exist in the integers.

Example 3

Here are two examples of fields: 1. $\mathbb{Z}_2 = \{0, 1\}$ where 1 + 1 = 0. 2. $\mathbb{Z}_3 = \{0, 1, 2\}$ with $c := a + b \pmod{3}$. In other words, $2 + 1 = 3 = 0 \pmod{3}$ and $2 \cdot 2 = 4 = 3 + 1 = 1 \pmod{3}$.

Simple properties follow from the properties of a field!

Theorem 4

If $x \in F$ where F is a field, 0x = 0.

$$0 = 0 \cdot x - 0 \cdot x = (0 + 0) \cdot x - 0 \cdot x = 0 \cdot x + 0 \cdot x - 0 \cdot x = 0 \cdot x.$$

Definition 5 (Ordered field)

A field F is an ordered field if F is also an ordered set with ordering < and

i) $\forall x, y, z \in F, x < y \implies x + z < y + z.$

ii) If x > 0 and y > 0 then xy > 0.

If x > 0 we say x is **positive**, and if $x \ge 0$ we say x is **non-negative**.

Example 6

 \mathbb{Q} is an ordered field.

A non-example would be \mathbb{Z}_2 . For instance, consider 0 < 1. If 0 < 1, then $1 + 0 < 1 + 1 = 0 \implies 1 < 0$ which is a contradiction. If 1 < 0, then $0 = 1 + 1 < 0 + 1 \implies 0 < 1$ which is a contradiction. Hence, \mathbb{Z}_2 is not an ordered field.

Using the definition of an ordered field, one can easily prove all of the usual facts about inequalities.

Theorem 7 If x > 0, then -x < 0 (and vice versa).

Proof: If $x \in F$ and x > 0, then by i),

 $-x + x > -x \implies 0 > -x.$

One can see Proposition 1.1.8 [L] for a list of other simple inequality facts.

Theorem 8

Let $x, y \in F$ where F is an ordered field. If x > 0 and y < 0 or x < 0 and y > 0, then xy < 0.

Proof: Suppose x > 0 and y < 0. Then, x > 0 and -y > 0. Hence, -xy = x(-y) > 0. Thus, xy < 0. If x < 0 and y > 0, then -x > 0 and $y > 0 \implies -xy = (-x)y > 0 \implies xy < 0$.

Question 9. Is there a greatest lower bound property?

For an ordered field F, if F has the least upper bound property then F has a greatest lower bound property.

Theorem 10

Let F be an ordered field with the least upper bound property. If $A \subset F$ is nonempty and bounded below, then $\inf A$ exists in F.

Proof: Suppose $A \subset F$ is nonempty and bounded below, i.e. $\exists a \in F$ such that $\forall x \in A, a \leq x$. Let $B = \{-x \mid x \in A\}$. Then, $\forall x \in A, -x \leq -a \implies -a$ is an upper bound for B. Since F has the least upper bound

property, $\exists c \in F$ such that $c = \sup B$. Then, $\forall x \in A, -x \leq c \implies \forall x \in A, -c \leq x$. Hence, -c is a lower bound for A. We have also shown that if a is a lower bound for A, then -a is an upper bound for B. Therefore, $c \leq -a$ since $c = \sup B \implies a \leq -c$. Hence, -c is the greatest lower bound for A.

Theorem 11

There exists a "unique" ordered field, labeled \mathbb{R} , such that $\mathbb{Q} \subset \mathbb{R}$ and \mathbb{R} has the least upper bound property.

One can construct \mathbb{R} using Dedekind cuts or as equivalence classes of Cauchy sequences. (We will define Cauchy sequences later in the course.)

Theorem 12

 $\exists ! r \in \mathbb{R} \text{ such that } r > 0 \text{ and } r^2 = 2.$ In other words, $\sqrt{2} \in \mathbb{R}$ but $\sqrt{2} \notin \mathbb{Q}$.

Proof: Let $\tilde{E} = \{x \in \mathbb{R} \mid x > 0 \text{ and } x^2 < 2\}$. Then, since \tilde{E} is bounded above (by 2 for instance), we have that $r := \sup \tilde{E}$ exists in \mathbb{R} . Then, one can show that r > 0 and $r^2 = 2$. This is left as an exercise.

We now prove uniqueness. Suppose that there is a $\tilde{r} > 0$ with $\tilde{r}^2 = 2$. Then, since $(r + \tilde{r}) > 0$,

$$0 = r^2 - \tilde{r}^2 = (r + \tilde{r})(r - \tilde{r}) \implies r - \tilde{r} = 0 \implies r = \tilde{r}.$$

Remark 13. In Assignment 2 Exercise 7, you will show that $\sqrt[3]{2} \in \mathbb{R}$.

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.