18.100A: Complete Lecture Notes

Lecture 5:

The Archimedian Property, Density of the Rationals, and Absolute Value

For all z,y € R and x < y, there exists an r € R such that z < r <y (take r = %)

Question 1. Can we find r € Q such that x <r <y?

Theorem 2

The answer is yes!

i) (Archimedian Property) If z,y € R and x > 0, then In € N such that nx > y.

ii) (Density of Q) If z,y € R and = < y then Ir € Q such that x < r < y.

Proof:

i) Suppose that x,y € R and 2 > 0. Then we wish to show that 3n € N such that n > £. Suppose this is not
the case. Then, Vn € N, n < £. In other words, N is bounded above by £. Hence, 3a = supN € R. Since a
is the least upper bound for N, a — 1 cannot be an upper bound for N. Hence, 3m € N such that

a—1l<m = a<m+1eN.

However, this is a contradiction, because then a is not an upper bound for N. Therefore, In € N such that

n>4
— T
ii) Suppose z,y € R and x < y. Then, there are three cases:

c0<2<y,
e x<0<y,and

ez <y <0.

For the second case, take r = 0 € Q. So, assume that 0 < z < y. Then, by the Archimedian Property, 3n € N
such that n(y —x) > 1. Again by the Archimedean property, 3l € N such that [ > nz. Thus, consider the set

S={keN|k>nax}.

By the well-ordering property of N, S has a least element, m € S = nrxr <m = z <7 € Q.
Sincem —1¢ S, m—1<nr = m <nx+1<ny. Hence,  <y. Therefore,
m
< —<y.
n
If instead we have v < y <0, then 0 < —y < —x = 37 € Q such that

—yY<r7r<x = < —T<yY

by the previous case.



Theorem 3
l1=sup{l-1]|neN}.

Proof: If n € N, then 1 — % <1 = 1 is an upper bound of this set. Suppose that x is an upper bound for
the set {1 —1/n | n € N}. We now prove that > 1. For the sake of contradiction, assume that z < 1. By the
Archimedean property, there exists an n € N such that 1 < n(1 — ). Therefore, In € N such that z < 1 — 1/n.
Hence, = is not an upper bound for the set {1 —1/n | n € N} if © < 1. Thus, if = is an upper bound, = > 1.

1
sup{1—|nEN}:1.
n

We now begin proving some theorems about supremums and infinimums which will make them easier to use.

Therefore,

O

Theorem 4

Suppose that S C R is nonempty and bounded above. Then, x = sup S if and only if

1. x is an upper bound for S.

2. foralle >0,dy € S such that x —e <y < z.

Proof: This is left as an exercise in Assignment 3. O

Notation 5

For x € R and A C R, define

z+A:={r+alac A}
zA:={za|a € A}

Theorem 6

Using this new notation, we have the following theorems:

1. If z € R and A is bounded above, then x + A is bounded above and

sup(z + A) = x + sup A.

2. If z > 0 and A is bounded above then xA is bounded above and

sup(zA) = zsup A.

Proof:

1. Suppose that z € R and A is bounded above. Therefore, sup A € R by the least upper bound property of R.
Then, Va € A, a < sup A. Hence,
Va€e A, z+a<z+supA.

Hence, x 4 sup A is an upper bound for z + A. Let € > 0. Then, 3y € A such that

supA—e<y<supAd = (z+supA) —e<y+z<z+supA.



Therefore, by our previous theorem, x + sup A = sup(x + A).

2. Suppose that £ > 0 and A is bounded above. Thus, supA € R. Then, Va € A, a < sup A and thus
ra < rsup A. Hence, xsup A is an upper bound of xA. Let ¢ > 0. Then Jy € A such that

€
supA— — <y<supA = zsupA —e<zy < zxsupA.
x

Therefore, by the previous theorem, sup(zA) = xsup A.

O
Theorem 7
Let A, B C R such that Vz € A,Vy € B, x <y. Then, sup A < inf B.
Proof: The proof of this is left to the reader. O
Absolute Value
Definition 8
If x € R we define
a8, x >
|| :=
—x, x<
Theorem 9
We can prove a bunch of theorems about the absolute value function that we usually take for granted:
1) || >0and || =0 <= z =0.
2) Vx e R, | — z| = |z|.
3) Vz,y €R, |zy| = |z|yl.
4) |z?%| = 2% = |z|%.
5) f z,y €R, then |z| <y <— —y <z <y.
6) Vz e R, z < |z|.
Proof:
1) If £ > 0 then x| =2 > 0. If # <0, then —x >0 = |z|] = —z > 0. Thus, || > 0. Now suppose z = 0.

Then, |z| = z = 0. For the other direction, suppose || = 0. Then, if z >0 = z = || = 0. If x <0, then
—z = || = 0. Therefore, t =0 <= |z| =0.

2) If x > 0 then —x < 0. Thus, || =2 = —(—z) = | —z|. If 2 <0 then —z > 0 and thus | —z| = | — (—2)| = |z|.

3) If z >0 and y > 0, then zy > 0 and |zy| = zy = |z||y|. If z <0 and y < 0, then
2y <0 = |oy| = —zy = (—2)y = |zlly|.

4) Take x =y in 3). Then, |2%| = |z|?. Since 2 > 0, it follows that |z?| = 22.

5) Suppose |z] <y. If z >0, then —y < 0 <z = |z| < y. Therefore, —y < & <y. If £ <0, then —z > 0 and
| — 2| <y. Hence, —y < —z <y = —y<z<y.



6) Take y = |x| in 5).
O

On its own, these properties of the absolute values may not seem all that useful, but in the next lecture we will

prove the extremely important Triangle Inequality.
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