18.100A: Complete Lecture Notes

Lecture 5:

The Archimedian Property, Density of the Rationals, and Absolute Value

For all $x, y \in \mathbb{R}$ and $x<y$, there exists an $r \in \mathbb{R}$ such that $x<r<y$ (take $\left.r=\frac{x+y}{2}\right)$.
Question 1. Can we find $r \in \mathbb{Q}$ such that $x<r<y$?

Theorem 2

The answer is yes!
i) (Archimedian Property) If $x, y \in \mathbb{R}$ and $x>0$, then $\exists n \in \mathbb{N}$ such that $n x>y$.
ii) (Density of \mathbb{Q}) If $x, y \in \mathbb{R}$ and $x<y$ then $\exists r \in \mathbb{Q}$ such that $x<r<y$.

Proof:

i) Suppose that $x, y \in \mathbb{R}$ and $x>0$. Then we wish to show that $\exists n \in \mathbb{N}$ such that $n>\frac{y}{x}$. Suppose this is not the case. Then, $\forall n \in \mathbb{N}, n \leq \frac{y}{x}$. In other words, \mathbb{N} is bounded above by $\frac{y}{x}$. Hence, $\exists a=\sup \mathbb{N} \in \mathbb{R}$. Since a is the least upper bound for $\mathbb{N}, a-1$ cannot be an upper bound for \mathbb{N}. Hence, $\exists m \in \mathbb{N}$ such that

$$
a-1<m \Longrightarrow a<m+1 \in \mathbb{N} \text {. }
$$

However, this is a contradiction, because then a is not an upper bound for \mathbb{N}. Therefore, $\exists n \in \mathbb{N}$ such that $n \geq \frac{y}{x}$.
ii) Suppose $x, y \in \mathbb{R}$ and $x<y$. Then, there are three cases:

- $0 \leq x<y$,
- $x<0<y$, and
- $x<y \leq 0$.

For the second case, take $r=0 \in \mathbb{Q}$. So, assume that $0 \leq x<y$. Then, by the Archimedian Property, $\exists n \in \mathbb{N}$ such that $n(y-x)>1$. Again by the Archimedean property, $\exists l \in \mathbb{N}$ such that $l>n x$. Thus, consider the set

$$
S=\{k \in \mathbb{N} \mid k>n x\}
$$

By the well-ordering property of \mathbb{N}, S has a least element, $m \in S \Longrightarrow n x<m \Longrightarrow x<\frac{m}{n} \in \mathbb{Q}$.
Since $m-1 \notin S, m-1 \leq n x \Longrightarrow m \leq n x+1<n y$. Hence, $\frac{m}{n}<y$. Therefore,

$$
x<\frac{m}{n}<y
$$

If instead we have $x<y \leq 0$, then $0 \leq-y<-x \Longrightarrow \exists \tilde{r} \in \mathbb{Q}$ such that

$$
-y<\tilde{r}<x \Longrightarrow x<-\tilde{r}<y
$$

by the previous case.

Theorem 3

$1=\sup \left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.

Proof: If $n \in \mathbb{N}$, then $1-\frac{1}{n}<1 \Longrightarrow 1$ is an upper bound of this set. Suppose that x is an upper bound for the set $\{1-1 / n \mid n \in \mathbb{N}\}$. We now prove that $x \geq 1$. For the sake of contradiction, assume that $x<1$. By the Archimedean property, there exists an $n \in \mathbb{N}$ such that $1<n(1-x)$. Therefore, $\exists n \in \mathbb{N}$ such that $x<1-1 / n$. Hence, x is not an upper bound for the set $\{1-1 / n \mid n \in \mathbb{N}\}$ if $x<1$. Thus, if x is an upper bound, $x \geq 1$. Therefore,

$$
\sup \left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=1
$$

We now begin proving some theorems about supremums and infinimums which will make them easier to use.

Theorem 4

Suppose that $S \subset \mathbb{R}$ is nonempty and bounded above. Then, $x=\sup S$ if and only if

1. x is an upper bound for S.
2. for all $\epsilon>0, \exists y \in S$ such that $x-\epsilon<y \leq x$.

Proof: This is left as an exercise in Assignment 3.

Notation 5

For $x \in \mathbb{R}$ and $A \subset \mathbb{R}$, define

$$
\begin{aligned}
x+A & :=\{x+a \mid a \in A\} \\
x A & :=\{x a \mid a \in A\} .
\end{aligned}
$$

Theorem 6

Using this new notation, we have the following theorems:

1. If $x \in \mathbb{R}$ and A is bounded above, then $x+A$ is bounded above and

$$
\sup (x+A)=x+\sup A
$$

2. If $x>0$ and A is bounded above then $x A$ is bounded above and

$$
\sup (x A)=x \sup A
$$

Proof:

1. Suppose that $x \in \mathbb{R}$ and A is bounded above. Therefore, $\sup A \in \mathbb{R}$ by the least upper bound property of \mathbb{R}. Then, $\forall a \in A, a \leq \sup A$. Hence,

$$
\forall a \in A, \quad x+a \leq x+\sup A
$$

Hence, $x+\sup A$ is an upper bound for $x+A$. Let $\epsilon>0$. Then, $\exists y \in A$ such that

$$
\sup A-\epsilon<y \leq \sup A \Longrightarrow(x+\sup A)-\epsilon<y+x \leq x+\sup A
$$

Therefore, by our previous theorem, $x+\sup A=\sup (x+A)$.
2. Suppose that $x>0$ and A is bounded above. Thus, $\sup A \in \mathbb{R}$. Then, $\forall a \in A, a \leq \sup A$ and thus $x a \leq x \sup A$. Hence, $x \sup A$ is an upper bound of $x A$. Let $\epsilon>0$. Then $\exists y \in A$ such that

$$
\sup A-\frac{\epsilon}{x}<y \leq \sup A \Longrightarrow x \sup A-\epsilon<x y \leq x \sup A
$$

Therefore, by the previous theorem, $\sup (x A)=x \sup A$.

Theorem 7

Let $A, B \subset \mathbb{R}$ such that $\forall x \in A, \forall y \in B, x \leq y$. Then, $\sup A \leq \inf B$.

Proof: The proof of this is left to the reader.

Absolute Value

Definition 8

If $x \in \mathbb{R}$ we define

$$
|x|:= \begin{cases}x, & x \geq 0 \\ -x, & x \leq 0\end{cases}
$$

Theorem 9

We can prove a bunch of theorems about the absolute value function that we usually take for granted:

1) $|x| \geq 0$ and $|x|=0 \Longleftrightarrow x=0$.
2) $\forall x \in \mathbb{R},|-x|=|x|$.
3) $\forall x, y \in \mathbb{R},|x y|=|x||y|$.
4) $\left|x^{2}\right|=x^{2}=|x|^{2}$.
5) If $x, y \in \mathbb{R}$, then $|x| \leq y \Longleftrightarrow-y \leq x \leq y$.
6) $\forall x \in \mathbb{R}, x \leq|x|$.

Proof:

1) If $x \geq 0$ then $|x|=x \geq 0$. If $x \leq 0$, then $-x \geq 0 \Longrightarrow|x|=-x \geq 0$. Thus, $|x| \geq 0$. Now suppose $x=0$. Then, $|x|=x=0$. For the other direction, suppose $|x|=0$. Then, if $x \geq 0 \Longrightarrow x=|x|=0$. If $x \leq 0$, then $-x=|x|=0$. Therefore, $x=0 \Longleftrightarrow|x|=0$.
2) If $x \geq 0$ then $-x \leq 0$. Thus, $|x|=x=-(-x)=|-x|$. If $x \leq 0$ then $-x \geq 0$ and thus $|-x|=|-(-x)|=|x|$.
3) If $x \geq 0$ and $y \geq 0$, then $x y \geq 0$ and $|x y|=x y=|x||y|$. If $x \leq 0$ and $y \leq 0$, then

$$
x y \leq 0 \Longrightarrow|x y|=-x y=(-x) y=|x||y|
$$

4) Take $x=y$ in 3). Then, $\left|x^{2}\right|=|x|^{2}$. Since $x^{2} \geq 0$, it follows that $\left|x^{2}\right|=x^{2}$.
5) Suppose $|x| \leq y$. If $x \geq 0$, then $-y \leq 0 \leq x=|x| \leq y$. Therefore, $-y \leq x \leq y$. If $x \leq 0$, then $-x \geq 0$ and $|-x| \leq y$. Hence, $-y \leq-x \leq y \Longrightarrow-y \leq x \leq y$.
6) Take $y=|x|$ in 5).

On its own, these properties of the absolute values may not seem all that useful, but in the next lecture we will prove the extremely important Triangle Inequality.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

