18.100A: Complete Lecture Notes

Lecture 6 :

The Uncountabality of the Real Numbers

Theorem 1 (Triangle Inequality)

$\forall x, y \in \mathbb{R}$,

$$
|x+y| \leq|x|+|y|
$$

Proof: Let $x, y \in \mathbb{R}$. Then, $x+y \leq|x|+|y|$ and

$$
(-x)+(-y) \leq|-x|+|-y|=|x|+|y| .
$$

Therefore, $-(|x|+|y|) \leq x+y \leq|x|+|y|$. Hence,

$$
|x+y| \leq|x|+|y|
$$

by our previous theorem.
Remark 2. We may denote the Triangle Inequality with \triangle-inequality as a shorthand.
Question 3. As we showed in Assignment 1, we know that \mathbb{Q} is countable. Is the set of real numbers countable?

Recall 4

Recall that a set A is countable if A is either finite or $|A|=|\mathbb{N}|$.

We can think of \mathbb{Q} as decimal expansions. In other words, we can think of a rational number x as being in the form

$$
x=10^{k} d_{k}+\cdots+10 d_{1}+d_{0}+10^{-1} d_{-1}+\cdots+10^{-M} d_{-M}
$$

with $d_{i} \in\{0,1,2,3, \ldots, 9\}$. We may write

$$
x=d_{k} d_{k-1} \ldots d_{1} d_{0} \bullet d_{-1} \ldots d_{-M}
$$

where • is the decimal point. The same can be said about real numbers if we allow for infinite decimal expansions.

Definition 5

Let $x \in(0,1]$ and let $d_{-j} \in\{0,1, \ldots, 9\}$. We say that x is represented by the digits $\left\{d_{-j} \mid j \in \mathbb{N}\right\}$, i.e. $x=0 \bullet d_{-1} d_{-2} \ldots$, if

$$
x=\sup \left\{10^{-1} d_{-1}+10^{-2} d_{-2}+\cdots+10^{-n} d_{-n} \mid n \in \mathbb{N}\right\}
$$

Here is an example: $.2500=\sup \left\{2 \cdot 10^{-1}, 2 \cdot 10^{-1}+5 \cdot 10^{-2}, 2 \cdot 10^{-1}+5 \cdot 10^{-2}+0 \cdot 10^{-3}, \ldots\right\}$. Notice here that after a while the previous set becomes $\frac{1}{4}$ repeating. Hence, we have $.2500=\sup \left\{\frac{1}{5}, \frac{1}{4}\right\}=\frac{1}{4}$.

Theorem 6

For every $x \in(0,1]$, there exists a unique sequence of digits d_{-j} such that $x=0 \bullet d_{-1} d_{-2} \ldots$ and

$$
0 \bullet d_{-1} d_{-2} \ldots d_{-n}<x \leq 0 \bullet d_{-1} d_{-2} \ldots d_{-n}+10^{-n} .
$$

Furthermore, for every set of digits $\left\{d_{-j} \mid j \in \mathbb{N}\right\}$, there exists a unique $x \in[0,1]$ such that $x=0 \bullet d_{-1} \ldots$

Notice however that the representative of $\frac{1}{2}$ is $0.4999 \ldots$.

Theorem 7 (Cantor)

$(0,1]$ is uncountable.

Proof: We will prove this through contradiction. Suppose that $(0,1]$ is countable. Therefore, there exists a bijection $x: \mathbb{N} \rightarrow(0,1]$. We now construct a $y \in(0,1]$ such that y is not in the range of x. We write

$$
x(n)=0 \bullet d_{-1}^{(n)} d_{-2}^{(n)} \ldots
$$

These are not exponents! This is the set of digits for a given $n \in \mathbb{N}$. In other words, x takes in a natural number n and maps it to the sequence of digits $\left\{d_{-j}^{(n)} \mid n \in \mathbb{N}\right\}$. Let

$$
e_{-j}=\left\{\begin{array}{ll}
1, & d_{-j}^{(j)} \neq 1 \\
2, & d_{-j}^{(j)}=1
\end{array} .\right.
$$

Let $y=0 \bullet e_{-1} e_{-2} \ldots$ Then, $\forall n \in \mathbb{N}$,

$$
0 \bullet e_{-1} e_{-2} \ldots e_{-n} \leq y 0 \bullet e_{-1} \ldots e_{-n}+10^{-n}
$$

since all $e_{-j} \mathrm{~S}$ are positive. Thus, $0 \bullet e_{-1} \ldots$ is the unique decimal expansion of y. However, for all $n \in \mathbb{N}, d_{-n}^{(n)} \neq e_{-n}$. Therefore, $\forall n, x(n) \neq y$. This is a contradiction, and thus $(0,1]$ is uncountable.

So $(0,1] \subset \mathbb{R}$ is uncountable!

Corollary 8

The set of real numbers, \mathbb{R}, is uncountable.

Sequences and Series

Remark 9. Analysis is the study of limits.

Sequences and Limits

Definition 10 (Sequence of Reals)

A sequence of real numbers is a function $x: \mathbb{N} \rightarrow \mathbb{R}$. We denote $x(n)=x_{n}$ and we denote the sequence by $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{x_{n}\right\}$, or x_{1}, x_{2}, \ldots

Definition 11

A sequence $\left\{x_{n}\right\}$ is bounded if $\exists B \geq 0$ such that $\forall n,\left|x_{n}\right| \leq B$.

One example of a bounded sequence is $x_{n}=\frac{1}{n}$, since $\left|\frac{1}{n}\right| \leq 1$ for all $n \in \mathbb{N}$. However, $x_{n}=n$ is not bounded.
Remark 12. A sequence is different from a set!
For example,

$$
-1,1,-1,1, \cdots=\left\{(-1)^{n}\right\}_{n=1}^{\infty}
$$

while

$$
\left\{(-1)^{n} \mid n \in \mathbb{N}\right\}=\{-1,1\}
$$

Definition 13 (Sequence Convergence of Reals)

A sequence $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if $\forall \epsilon>0, \exists M \in \mathbb{N}$ such that $\forall n \geq M$,

$$
\left|x_{n}-x\right|<\epsilon
$$

A sequence that converges is said to be convergent, and otherwise is said to be divergent. We can also define divergence as the negation of convergent.

Negation 14 (Not Convergent)

The sequence $\left\{x_{n}\right\}$ is not convergent, or divergent if $\exists \epsilon_{0}>0$ such that $\forall M \in \mathbb{N}, \exists n \geq M$ so that

$$
\left|x_{n}-x\right| \geq \epsilon_{0}
$$

We now prove two theorems:

Theorem 15

If $\left\{x_{n}\right\}$ converges for x and y, then $x=y$. In other words, limits of convergent sequences of real numbers are unique.

Theorem 16

Let $x, y \in \mathbb{R}$. If $\forall \epsilon>0,|x-y|<\epsilon$, then $x=y$.

Proof: We first prove the second theorem. Suppose that $x \neq y$. Then, $|x-y|>0$. Hence, choosing $\epsilon=\frac{|x-y|}{2}$, we have

$$
|x-y| \leq \frac{|x-y|}{2} \Longrightarrow \frac{|x-y|}{2}<0
$$

which is a contradiction.
Using this we prove the former theorem. Suppose x_{n} converges to x and to y. We will show that for all $\epsilon>0$, $|x-y|<\epsilon$. Firstly, given $x_{n} \rightarrow x$, for $\epsilon>0$ there exists an $N_{1} \in \mathbb{N}$ such that $\forall n \geq N_{1}$,

$$
\left|x_{n}-x\right|<\frac{\epsilon}{2}
$$

Then, given $x_{n} \rightarrow y$, for $\epsilon>0$ there exists an $N_{2} \in \mathbb{N}$ such that $\forall n \geq N_{2}$,

$$
\left|x_{n}-y\right|<\frac{\epsilon}{2}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then, for all $\epsilon>0$ there exists an $N=\max \left\{N_{1}, N_{2}\right\}$ such that for all $n \geq N$,

$$
|x-y| \leq\left|x-x_{n}\right|+\left|x_{n}-y\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

by the Triangle Inequality. Hence, for all $\epsilon>0,|x-y|<\epsilon$. Therefore, $x=y$.

Notation 17
We write $x=\lim _{n \rightarrow \infty} x_{n}$ or $x_{n} \rightarrow x$.

Example 18
Given the sequence $x_{n}=c \forall n, \lim _{n \rightarrow \infty} x_{n}=c$.

Proof: Let $\epsilon>0$ and $M=1$. Thus, for all $n \geq 1$,

$$
\left|x_{n}-c\right|=|c-c|=0<\epsilon
$$

Example 19
$\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Proof: Let $\epsilon>0$. Choose $M \in \mathbb{N}$ such that $M^{-1}>\epsilon^{-1}$. Hence, for all $n \geq M,\left|\frac{1}{n}-0\right|=\frac{1}{n} \leq \frac{1}{M} \leq \epsilon$.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

