18.100A: Complete Lecture Notes

Lecture 8:

The Squeeze Theorem and Operations Involving Convergent Sequences

Facts About Limits

Theorem 1 (Squeeze Theorem)

Let $\{a_n\}$, $\{b_n\}$, and $\{x_n\}$ be sequences such that $\forall n \in \mathbb{N}$,

$$a_n \leq x_n \leq b_k$$
.

Suppose that $\{a_n\}$ and $\{b_n\}$ converge and

$$\lim_{n \to \infty} a_n = x = \lim_{n \to \infty} b_n.$$

Therefore, $\{x\}$ converges and $\lim_{n\to\infty} x_n = x$.

Remark 2. We sometimes abbreviate the Squeeze Theorem to ST.

Proof: Let $\epsilon > 0$. Since $\lim_{n \to \infty} a_n = x$, there exists an $M_0 \in \mathbb{N}$ such that for all $n \ge M_0$,

$$|a_n - x| < \epsilon \implies x - \epsilon < a_n.$$

Since $\lim_{n\to\infty} b_n = x$, $\exists M_1 \in \mathbb{N}$ such that $\forall n \geq M_1$,

$$|b_n - x| < \epsilon \implies b_n < x + \epsilon.$$

Choose $M = \max\{M_0, M_1\}$. Then, if $n \geq M$, then

$$x - \epsilon < a_n \le x_n \le b_n < x - \epsilon \implies |x_n - x| < \epsilon.$$

Therefore, $\{x_n\}$ is convergent and $\lim_{n\to\infty} x_n = x$.

Theorem 3

Another way to check that a sequence $x_n \to x$, is stated below:

$$\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} |x_n - x| = 0.$$

Hence, we can consider a sequence like the following:

Example 4

Show that

$$\lim_{n\to\infty}\frac{n^2}{n^2+n+1}=1.$$

Proof: We have

$$\left|\frac{n^2}{n^2+n+1}-1\right| = \left|\frac{-n-1}{n^2+n+1}\right| = \frac{n+1}{n^2+n+1} \le \frac{n+1}{n^2+n} = \frac{1}{n}.$$

Thus,

$$0 \leq \left| \frac{n^2}{n^2 + n + 1} - 1 \right| \leq \frac{1}{n} \to 0 \implies \lim_{n \to \infty} \left| \frac{n^2}{n^2 + n + 1} - 1 \right| = 0$$

by the Squeeze Theorem.

Question 5. How do limits interact with ordering?

Theorem 6

Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers. Then,

- 1. if $\{x_n\}$ and $\{y_n\}$ are convergent sequences and $\forall n \in \mathbb{N} \ x_n \leq y_n$, then $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.
- 2. if $\{x_n\}$ is a convergent sequence and $\forall n \in \mathbb{N} \ x \leq x_n \leq b_n$ then $a \leq \lim_{n \to \infty} x_n \leq b$.

Proof:

1. Let $x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} y_n$. Suppose for the sake of contradiction that y < x. Then, $\exists M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$

$$|y_n - y| < \frac{x - y}{2}$$

And $\exists M_1 \in \mathbb{N}$ such that for all $n \geq M_1$,

$$|x_n - x| < \frac{x - y}{2}.$$

Then, if $M = M_0 + M_1 \ge \max\{M_0, M_1\}$,

$$y_M < \frac{x-y}{2} + y = \frac{x+y}{2} = x - \frac{x-y}{2} + x < x_M.$$

However, this would imply that $y_M < x_M$ which contradicts $\forall n \in \mathbb{N} x_n \leq y_n$.

2. Apply part 1 to proof part 2, by considering $y_n = a \le x_n \le b = z_n$ for all $n \in \mathbb{N}$.

Question 7. How do limits interact with algebraic operations?

Theorem 8

Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$. Then,

- 1. $\{x_y + y_n\}_n$ is convergent and $\lim_{n\to\infty} (x_n + y_n) = x + y$.
- 2. $\forall c \in \mathbb{R}, \{cx_n\}_n \text{ is convergent and } \lim_{n\to\infty} cx_n = cx.$
- 3. $\{x_n \cdot y_n\}$ is convergent and $\lim_{n\to\infty} x_n y_n = xy$.
- 4. If $\forall n \in \mathbb{N}, y_n \neq 0$ and $y \neq 0$, then $\{x_n/y_n\}_n$ is convergent and

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}.$$

Proof:

1. Let $\epsilon > 0$. Then, since $x_n \to x$, $\exists M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$, $|x_n - x| < \frac{\epsilon}{2}$. Since $y_n \to y$, $\exists M_1 \in \mathbb{N}$ such that $\forall n \geq M_1$, $|y_n - y| < \frac{\epsilon}{2}$. Hence, letting $M = \max\{M_0, M_1\}$, we get for all $n \geq M$,

$$|x_n + y_n - (x+y)| \le |x_n - x| + |y_n - y| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

2. Let $\epsilon > 0$. Since $x_n \to x$, $\exists M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$, $|x_n - x| < \frac{\epsilon}{|c|+1}$. Let $M = M_0$. Then, $\forall n \geq M$,

$$|cx_n - cx| = |c||x_n - x| \le \frac{|c|}{|c| + 1} \cdot \epsilon < \epsilon$$

since $\frac{|c|}{|c|+1} < 1$.

3. Since $y_n \to y$, $\{y_n\}$ is bounded. In other words, $\exists B \ge 0$ such that $\forall n \in \mathbb{N}, |y_n| \le B$. Then,

$$|x_n y_n - xy| = |(x_n - x)y_n + (y_n - y)x|$$

$$\leq |x_n - x||y_n + |x||y_n - y|$$

$$\leq B|x_n - x| + |x||y_n - y|.$$

Therefore, $0 \le |x_n y_n - xy| \le B|x_n - x| + |x||y_n - y|$. Since $B|x_n - x| + |x||y_n - y| \to 0$, by the Squeeze Theorem $\lim_{n\to\infty} |x_n y_n - xy| = 0$.

4. We prove $\frac{1}{y_n} \to \frac{1}{y}$. We first prove $\exists b > 0$ such that $\forall n \in \mathbb{N}, |y_n| \ge b$. Since $y_n \to y$ and $y \ne 0, \exists M_0 \in \mathbb{N}$ such that $\forall n \ge M_0$,

$$|y_n - y| < \frac{|y|}{2}.$$

By the Triangle Inequality, $\forall n \geq M_0$,

$$|y| \le |y_n - y| + |y_n| \le \frac{|y|}{2} + |y_n| \implies |y_n| \ge \frac{|y|}{2}$$

Let $b = \min\left\{|y_1|, \dots, |y_{M_0-1}|, \frac{|y|}{2}\right\}$. Then, $\forall n \in \mathbb{N}, |y_n| \ge b$. Therefore,

$$0 \le \left| \frac{1}{y_n} - \frac{1}{y} \right| = \frac{|y_n - y|}{|y_n||y|} \le \frac{1}{b|y|} |y_n - y|.$$

By the Squeeze Theorem, $\lim_{n\to\infty} \left| \frac{1}{y_n} - \frac{1}{y} \right| = 0$. Therefore, $\lim_{n\to\infty} \frac{1}{y_n} = \frac{1}{y}$. Furthermore, by the proof before this (3.), it follows that $\lim_{n\to\infty} \left(x_n \cdot \frac{1}{y_n} \right) = \frac{x}{y}$.

Remark 9. By induction, one can prove that

$$\lim_{n \to \infty} (x_n)^k = x^k.$$

Theorem 10

If $\{x_n\}$ is a convergent sequence such that $\forall n \in \mathbb{N}, x_n \geq 0$, then $\{\sqrt{x_n}\}$ is convergent and

$$\lim_{n \to \infty} \sqrt{x_n} = \sqrt{\lim_{n \to \infty} x_n}.$$

Proof: Let $x = \lim_{n \to \infty} x_n$.

<u>Case 1</u>: x = 0. Let $\epsilon > 0$. Then, since $x_n \to 0$, there exists an $M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$, $x_n = |x_n - 0| < \epsilon^2$. Choose $M = M_0$. Then, $\forall n \geq M$,

$$|\sqrt{x_n} - \sqrt{0}| = \sqrt{x_n} < \sqrt{\epsilon^2} = \epsilon.$$

Case 2: x > 0. We have $\forall n \in \mathbb{N}$,

$$|\sqrt{x_n} - \sqrt{x}| = \left| \frac{\sqrt{x_n} - \sqrt{x}}{\sqrt{x_n} + \sqrt{x}} \cdot (\sqrt{x_n} + \sqrt{x}) \right|$$
$$= \frac{1}{\sqrt{x_n} + \sqrt{x}} |x_n - x|$$
$$\leq \frac{1}{\sqrt{x}} |x_n - x|.$$

Hence,

$$0 \le |\sqrt{x_n} - \sqrt{x}| \le \frac{1}{\sqrt{x}} |x_n - x|$$

 $\forall n \in \mathbb{N}$. Hence, by the Squeeze Theorem,

$$\lim_{n \to \infty} |\sqrt{x_n} - \sqrt{x}| = 0.$$

Remark 11. Why must we do casework in the above proof?

Theorem 12

If $\{x_n\}$ is convergent and $\lim_{n\to\infty} x_n = x$, then $\{|x_n|\}$ is convergent and $\lim_{n\to\infty} |x_n| = |x|$.

Proof: Firstly, note that $\forall x \in \mathbb{R}, \sqrt{x^2} = |x|$. Then,

$$\lim_{n \to \infty} |x_n| = \lim_{n \to \infty} \sqrt{x_n^2} = \sqrt{x^2} = |x|$$

by the previous theorem.

Theorem 13

If $c \in (0,1)$, then $\lim_{n\to\infty} c^n = 0$. If c > 1, then $\{c^n\}$ is unbounded.

Proof: If 0 < c < 1, we claim that $\forall n \in \mathbb{N}$, $0 < c^{n+1} < c^n < 1$. We can prove this through induction. Firstly, notice that $0 < c^2 < c < 1$ since c > 0 and c < 1. Now assume that $0 < c^{m+1} < c^m$. Then, multiply by c > 0 to obtain

$$0 < c^{m+1} \cdot c = c^{(m+1)+1} < c^m \cdot c = c^{(m+1)}.$$

By induction, our claim holds. Thus, $\{c^n\}$ is a monotone decreasing sequence and is bounded below. Thus, $\{c^n\}$ is convergent. Let $L = \lim_{n \to \infty} c^n$. We will prove that L = 0. Let $\epsilon > 0$. Then, $\exists M \in \mathbb{N}$ such that $\forall n \geq M$, $|c^n - L| < (1 - c)\frac{\epsilon}{2}$. Therefore,

$$(1-c)|L| = |L - cL| = |L - c^{M+1} + c^{M+1} - cL|$$

$$\leq |L - c^{M+1}| + c|c^M - L|$$

$$< (1-c)\frac{\epsilon}{2} + c(1-c)\frac{\epsilon}{2} < (1-c)\epsilon.$$

Therefore, $\forall \epsilon > 0$, $|L| < \epsilon \implies L = 0$.

Now let c > 1. We have to show that $\forall B \geq 0, \exists n \in \mathbb{N} \text{ such that } c^n > B$. Let $B \geq 0$. Choose $n \in \mathbb{N}$ such that $n > \frac{B}{c-1}$. Then,

$$c^n = (1 + (1 - c))^n \ge 1 + n(c - 1) \ge n(c - 1) > B.$$

To see why this center inequality is true, see the last theorem shown in Lecture 1.

MIT OpenCourseWare https://ocw.mit.edu

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.