18.100A: Complete Lecture Notes

Lecture 8:

The Squeeze Theorem and Operations Involving Convergent Sequences

Facts About Limits

Theorem 1 (Squeeze Theorem)
Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{x_{n}\right\}$ be sequences such that $\forall n \in \mathbb{N}$,

$$
a_{n} \leq x_{n} \leq b_{k} .
$$

Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge and

$$
\lim _{n \rightarrow \infty} a_{n}=x=\lim _{n \rightarrow \infty} b_{n} .
$$

Therefore, $\{x\}$ converges and $\lim _{n \rightarrow \infty} x_{n}=x$.

Remark 2. We sometimes abbreviate the Squeeze Theorem to ST.
Proof: Let $\epsilon>0$. Since $\lim _{n \rightarrow \infty} a_{n}=x$, there exists an $M_{0} \in \mathbb{N}$ such that for all $n \geq M_{0}$,

$$
\left|a_{n}-x\right|<\epsilon \Longrightarrow x-\epsilon<a_{n}
$$

Since $\lim _{n \rightarrow \infty} b_{n}=x, \exists M_{1} \in \mathbb{N}$ such that $\forall n \geq M_{1}$,

$$
\left|b_{n}-x\right|<\epsilon \Longrightarrow b_{n}<x+\epsilon
$$

Choose $M=\max \left\{M_{0}, M_{1}\right\}$. Then, if $n \geq M$, then

$$
x-\epsilon<a_{n} \leq x_{n} \leq b_{n}<x-\epsilon \Longrightarrow\left|x_{n}-x\right|<\epsilon .
$$

Therefore, $\left\{x_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=x$.

Theorem 3

Another way to check that a sequence $x_{n} \rightarrow x$, is stated below:

$$
\lim _{n \rightarrow \infty} x_{n}=x \Longleftrightarrow \lim _{n \rightarrow \infty}\left|x_{n}-x\right|=0
$$

Hence, we can consider a sequence like the following:

Example 4

Show that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+n+1}=1
$$

Proof: We have

$$
\left|\frac{n^{2}}{n^{2}+n+1}-1\right|=\left|\frac{-n-1}{n^{2}+n+1}\right|=\frac{n+1}{n^{2}+n+1} \leq \frac{n+1}{n^{2}+n}=\frac{1}{n}
$$

Thus,

$$
0 \leq\left|\frac{n^{2}}{n^{2}+n+1}-1\right| \leq \frac{1}{n} \rightarrow 0 \Longrightarrow \lim _{n \rightarrow \infty}\left|\frac{n^{2}}{n^{2}+n+1}-1\right|=0
$$

by the Squeeze Theorem.
Question 5. How do limits interact with ordering?

Theorem 6

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers. Then,

1. if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent sequences and $\forall n \in \mathbb{N} x_{n} \leq y_{n}$, then $\lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} y_{n}$.
2. if $\left\{x_{n}\right\}$ is a convergent sequence and $\forall n \in \mathbb{N} x \leq x_{n} \leq b_{n}$ then $a \leq \lim _{n \rightarrow \infty} x_{n} \leq b$.

Proof:

1. Let $x=\lim _{n \rightarrow \infty} x_{n}$ and $y=\lim _{n \rightarrow \infty} y_{n}$. Suppose for the sake of contradiction that $y<x$. Then, $\exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}$

$$
\left|y_{n}-y\right|<\frac{x-y}{2}
$$

And $\exists M_{1} \in \mathbb{N}$ such that for all $n \geq M_{1}$,

$$
\left|x_{n}-x\right|<\frac{x-y}{2}
$$

Then, if $M=M_{0}+M_{1} \geq \max \left\{M_{0}, M_{1}\right\}$,

$$
y_{M}<\frac{x-y}{2}+y=\frac{x+y}{2}=x-\frac{x-y}{2}+x<x_{M} .
$$

However, this would imply that $y_{M}<x_{M}$ which contradicts $\forall n \in \mathbb{N} x_{n} \leq y_{n}$.
2. Apply part 1 to proof part 2 , by considering $y_{n}=a \leq x_{n} \leq b=z_{n}$ for all $n \in \mathbb{N}$.

Question 7. How do limits interact with algebraic operations?

Theorem 8

Suppose $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. Then,

1. $\left\{x_{y}+y_{n}\right\}_{n}$ is convergent and $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=x+y$.
2. $\forall c \in \mathbb{R},\left\{c x_{n}\right\}_{n}$ is convergent and $\lim _{n \rightarrow \infty} c x_{n}=c x$.
3. $\left\{x_{n} \cdot y_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} x_{n} y_{n}=x y$.
4. If $\forall n \in \mathbb{N}, y_{n} \neq 0$ and $y \neq 0$, then $\left\{x_{n} / y_{n}\right\}_{n}$ is convergent and

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\frac{x}{y} .
$$

Proof:

1. Let $\epsilon>0$. Then, since $x_{n} \rightarrow x, \exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0},\left|x_{n}-x\right|<\frac{\epsilon}{2}$. Since $y_{n} \rightarrow y, \exists M_{1} \in \mathbb{N}$ such that $\forall n \geq M_{1},\left|y_{n}-y\right|<\frac{\epsilon}{2}$. Hence, letting $M=\max \left\{M_{0}, M_{1}\right\}$, we get for all $n \geq M$,

$$
\left|x_{n}+y_{n}-(x+y)\right| \leq\left|x_{n}-x\right|+\left|y_{n}-y\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

2. Let $\epsilon>0$. Since $x_{n} \rightarrow x, \exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0},\left|x_{n}-x\right|<\frac{\epsilon}{|c|+1}$. Let $M=M_{0}$. Then, $\forall n \geq M$,

$$
\left|c x_{n}-c x\right|=|c|\left|x_{n}-x\right| \leq \frac{|c|}{|c|+1} \cdot \epsilon<\epsilon
$$

since $\frac{|c|}{|c|+1}<1$.
3. Since $y_{n} \rightarrow y,\left\{y_{n}\right\}$ is bounded. In other words, $\exists B \geq 0$ such that $\forall n \in \mathbb{N},\left|y_{n}\right| \leq B$. Then,

$$
\begin{aligned}
\left|x_{n} y_{n}-x y\right| & =\left|\left(x_{n}-x\right) y_{n}+\left(y_{n}-y\right) x\right| \\
& \leq\left|x_{n}-x\right|\left|y_{n}+|x|\right| y_{n}-y \mid \\
& \leq B\left|x_{n}-x\right|+|x|\left|y_{n}-y\right|
\end{aligned}
$$

Therefore, $0 \leq\left|x_{n} y_{n}-x y\right| \leq B\left|x_{n}-x\right|+|x|\left|y_{n}-y\right|$. Since $B\left|x_{n}-x\right|+|x|\left|y_{n}-y\right| \rightarrow 0$, by the Squeeze Theorem $\lim _{n \rightarrow \infty}\left|x_{n} y_{n}-x y\right|=0$.
4. We prove $\frac{1}{y_{n}} \rightarrow \frac{1}{y}$. We first prove $\exists b>0$ such that $\forall n \in \mathbb{N},\left|y_{n}\right| \geq b$. Since $y_{n} \rightarrow y$ and $y \neq 0, \exists M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}$,

$$
\left|y_{n}-y\right|<\frac{|y|}{2} .
$$

By the Triangle Inequality, $\forall n \geq M_{0}$,

$$
|y| \leq\left|y_{n}-y\right|+\left|y_{n}\right| \leq \frac{|y|}{2}+\left|y_{n}\right| \Longrightarrow\left|y_{n}\right| \geq \frac{|y|}{2}
$$

Let $b=\min \left\{\left|y_{1}\right|, \ldots,\left|y_{M_{0}-1}\right|, \frac{|y|}{2}\right\}$. Then, $\forall n \in \mathbb{N},\left|y_{n}\right| \geq b$. Therefore,

$$
0 \leq\left|\frac{1}{y_{n}}-\frac{1}{y}\right|=\frac{\left|y_{n}-y\right|}{\left|y_{n}\right||y|} \leq \frac{1}{b|y|}\left|y_{n}-y\right| .
$$

By the Squeeze Theorem, $\lim _{n \rightarrow \infty}\left|\frac{1}{y_{n}}-\frac{1}{y}\right|=0$. Therefore, $\lim _{n \rightarrow \infty} \frac{1}{y_{n}}=\frac{1}{y}$. Furthermore, by the proof before this (3.), it follows that $\lim _{n \rightarrow \infty}\left(x_{n} \cdot \frac{1}{y_{n}}\right)=\frac{x}{y}$.

Remark 9. By induction, one can prove that

$$
\lim _{n \rightarrow \infty}\left(x_{n}\right)^{k}=x^{k}
$$

Theorem 10

If $\left\{x_{n}\right\}$ is a convergent sequence such that $\forall n \in \mathbb{N}, x_{n} \geq 0$, then $\left\{\sqrt{x_{n}}\right\}$ is convergent and

$$
\lim _{n \rightarrow \infty} \sqrt{x_{n}}=\sqrt{\lim _{n \rightarrow \infty} x_{n}}
$$

Proof: Let $x=\lim _{n \rightarrow \infty} x_{n}$.

Case 1: $x=0$. Let $\epsilon>0$. Then, since $x_{n} \rightarrow 0$, there exists an $M_{0} \in \mathbb{N}$ such that $\forall n \geq M_{0}, x_{n}=\left|x_{n}-0\right|<\epsilon^{2}$. Choose $M=M_{0}$. Then, $\forall n \geq M$,

$$
\left|\sqrt{x_{n}}-\sqrt{0}\right|=\sqrt{x_{n}}<\sqrt{\epsilon^{2}}=\epsilon
$$

Case 2: $x>0$. We have $\forall n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\sqrt{x_{n}}-\sqrt{x}\right| & =\left|\frac{\sqrt{x_{n}}-\sqrt{x}}{\sqrt{x_{n}}+\sqrt{x}} \cdot\left(\sqrt{x_{n}}+\sqrt{x}\right)\right| \\
& =\frac{1}{\sqrt{x_{n}}+\sqrt{x}}\left|x_{n}-x\right| \\
& \leq \frac{1}{\sqrt{x}}\left|x_{n}-x\right|
\end{aligned}
$$

Hence,

$$
0 \leq\left|\sqrt{x_{n}}-\sqrt{x}\right| \leq \frac{1}{\sqrt{x}}\left|x_{n}-x\right|
$$

$\forall n \in \mathbb{N}$. Hence, by the Squeeze Theorem,

$$
\lim _{n \rightarrow \infty}\left|\sqrt{x_{n}}-\sqrt{x}\right|=0
$$

Remark 11. Why must we do casework in the above proof?

Theorem 12

If $\left\{x_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=x$, then $\left\{\left|x_{n}\right|\right\}$ is convergent and $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$.

Proof: Firstly, note that $\forall x \in \mathbb{R}, \sqrt{x^{2}}=|x|$. Then,

$$
\lim _{n \rightarrow \infty}\left|x_{n}\right|=\lim _{n \rightarrow \infty} \sqrt{x_{n}^{2}}=\sqrt{x^{2}}=|x|
$$

by the previous theorem.

Theorem 13

If $c \in(0,1)$, then $\lim _{n \rightarrow \infty} c^{n}=0$. If $c>1$, then $\left\{c^{n}\right\}$ is unbounded.

Proof: If $0<c<1$, we claim that $\forall n \in \mathbb{N}, 0<c^{n+1}<c^{n}<1$. We can prove this through induction. Firstly, notice that $0<c^{2}<c<1$ since $c>0$ and $c<1$. Now assume that $0<c^{m+1}<c^{m}$. Then, multiply by $c>0$ to obtain

$$
0<c^{m+1} \cdot c=c^{(m+1)+1}<c^{m} \cdot c=c^{(m+1)} .
$$

By induction, our claim holds. Thus, $\left\{c^{n}\right\}$ is a monotone decreasing sequence and is bounded below. Thus, $\left\{c^{n}\right\}$ is convergent. Let $L=\lim _{n \rightarrow \infty} c^{n}$. We will prove that $L=0$. Let $\epsilon>0$. Then, $\exists M \in \mathbb{N}$ such that $\forall n \geq M$, $\left|c^{n}-L\right|<(1-c) \frac{\epsilon}{2}$. Therefore,

$$
\begin{aligned}
(1-c)|L| & =|L-c L|=\left|L-c^{M+1}+c^{M+1}-c L\right| \\
& \leq\left|L-c^{M+1}\right|+c\left|c^{M}-L\right| \\
& <(1-c) \frac{\epsilon}{2}+c(1-c) \frac{\epsilon}{2}<(1-c) \epsilon .
\end{aligned}
$$

Therefore, $\forall \epsilon>0,|L|<\epsilon \Longrightarrow L=0$.

Now let $c>1$. We have to show that $\forall B \geq 0, \exists n \in \mathbb{N}$ such that $c^{n}>B$. Let $B \geq 0$. Choose $n \in \mathbb{N}$ such that $n>\frac{B}{c-1}$. Then,

$$
c^{n}=(1+(1-c))^{n} \geq 1+n(c-1) \geq n(c-1)>B .
$$

To see why this center inequality is true, see the last theorem shown in Lecture 1.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

