# 18.100A: Complete Lecture Notes 

Lecture 9:
Limsup, Liminf, and the Bolzano-Weierstrass Theorem

## Theorem 1 (Some Special Sequences)

What follows are some special sequences to have in our toolbox.

1. If $p>0$, then $\lim _{n \rightarrow \infty} n^{-p}=0$.
2. If $p>0$ then $p^{\frac{1}{n}}=1$.
3. $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.

## Proof:

1. Let $\epsilon>0$. Then, choose $M>(1 / \epsilon)^{1 / p}$. Hence, if $n \geq M$,

$$
\left|\frac{1}{n^{p}}-0\right|=\frac{1}{\left|n^{p}\right|} \leq \frac{1}{M^{p}}<\epsilon
$$

2. Suppose $p>1$. Then, $p^{1 / n}-1>0$ which may be proven by induction. Furthermore, we have

$$
\begin{aligned}
p=\left(1+\left(p^{1 / n}-1\right)\right)^{n} & \\
& \geq 1+n\left(p^{1 / n}-1\right)
\end{aligned}
$$

Therefore, $0<p^{1 / n}-1 \leq \frac{p-1}{n}$. Hence, we may apply the Squeeze Theorem, obtaining $\lim _{n \rightarrow \infty}\left|p^{1 / n}-1\right|=0$. If $p<1$, then

$$
\lim _{n \rightarrow \infty} p^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{(1 / p)^{1 / n}}=\frac{1}{1}=1
$$

Furthermore, if $p=1$ then it is clear that $\lim _{n \rightarrow \infty} p^{1 / n}=1$. Hence, in all cases, the limit is 1 .
3. Let $x_{n}=n^{1 / n}-1 \geq 0$. We want to show that $\lim _{n \rightarrow \infty} x_{n}=0$, as this will imply the end result. Notice that

$$
n=\left(1+x_{n}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j} x_{n}^{j} \geq\binom{ n}{2} x_{n}^{2}=\frac{n!}{2(n-2)!} \cdot x_{n}^{2}=\frac{n(n-1)}{2} \cdot x_{n}^{2}
$$

Thus, for $n>1$,

$$
0 \leq x_{n} \leq \sqrt{\frac{2}{n-1}} \Longrightarrow x_{n} \rightarrow 0
$$

## Limsup/Liminf

Question 2. Does a bounded sequence have a convergent subsequence?

## Definition 3 (Limsup/Liminf)

Let $\left\{x_{n}\right\}$ be a bounded sequence. We define, if the limits exist,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & :=\lim _{n \rightarrow \infty}\left(\sup \left\{x_{k} \mid k \geq n\right\}\right) \\
\liminf _{n \rightarrow \infty} x_{n} & :=\lim _{n \rightarrow \infty}\left(\inf \left\{x_{k} \mid k \geq n\right\}\right)
\end{aligned}
$$

These are called the limit superior and limit inferior respectively.

We will now show that these limits always exist.

## Theorem 4

Let $\left\{x_{n}\right\}$ be a bounded sequence, and let

$$
\begin{aligned}
a_{n} & =\sup \left\{x_{k} \mid k \geq n\right\} \\
b_{n} & =\inf \left\{x_{k} \mid k \geq n\right\}
\end{aligned}
$$

Then,

1. $\left\{a_{n}\right\}$ is monotone decreasing and bounded, and $\left\{b_{n}\right\}$ is monotone increasing and bounded.
2. $\lim \inf _{n \rightarrow \infty} x_{n} \leq \limsup \operatorname{sun}_{n \rightarrow \infty} x_{n}$.

## Proof

1. Since, $\forall \in \mathbb{N}$,

$$
\left\{x_{k} \mid k \geq n+1\right\} \subseteq\left\{x_{k} \mid k \geq n\right\}
$$

we have that $a_{n+1}=\sup \left\{x_{k} \mid k \geq n+1\right\} \leq \sup \left\{x_{k} \mid k \geq n\right\}=a_{n}$.
Similarly, $\forall n \in \mathbb{N}, b_{n+1} \geq b_{n}$. Given $\left\{x_{n}\right\}$ is a bounded sequence, $\exists B \geq 0$ such that $\forall n \in \mathbb{N}$,

$$
-B \leq x_{n} \leq B
$$

Therefore, $\forall n \in \mathbb{N}$,

$$
-B \leq b_{n} \leq a_{n} \leq B
$$

which implies both sequences are bounded.
2. By the above equation, $\forall n \in \mathbb{N}, b_{n} \leq a_{n} \Longrightarrow \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} b_{n} \leq \lim _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} x_{n}$.

Let's consider a few examples.

## Example 5

Let $x_{n}=(-1)^{n}$. Calculate the liminf and limsup of this sequence.

Proof: Notice that $\left\{(-1)^{k} \mid l \geq n\right\}=\{-1,1\}$. Thus, the supremum of these sets is always 1 and the infimum is always -1 . Therefore,

$$
\limsup _{n \rightarrow \infty} x_{n}=1 \text { and } \liminf _{n \rightarrow \infty} x_{n}=-1
$$

## Example 6

Let $x_{n}=\frac{1}{n}$. Calculate the liminf and lim sup of this sequence.

Proof: We may do this directly:

$$
\begin{gathered}
\sup \{1 / k \mid k \geq n\}=\frac{1}{n} \rightarrow 0 \Longrightarrow \limsup _{n \rightarrow \infty} x_{n}=0 \\
\inf \{1 / k \mid k \geq n\}=0 \rightarrow 0 \Longrightarrow \liminf _{n \rightarrow \infty} x_{n}=0
\end{gathered}
$$

The limit inferior and the limit superior allow us to answer the question posed at the beginning of this section.

## Theorem 7

Let $\left\{x_{n}\right\}$ be a bounded sequence. Then, there exists subsequences $\left\{x_{n_{k}}\right\}$ and $\left\{x_{m_{k}}\right\}$ such that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} x_{n_{k}}=\limsup _{n \rightarrow \infty} x_{n} \\
& \lim _{k \rightarrow \infty} x_{m_{k}}=\underset{n \rightarrow \infty}{\limsup } x_{n} .
\end{aligned}
$$

Proof: Let $a_{n}=\sup \left\{x_{k} \mid k \geq n\right\}$. Then, $\exists n_{1} \in \mathbb{N}$ such that $a_{1}-1<x_{n_{1}} \leq a_{1}$. Now, $\exists n_{2}>n_{1}$ such that

$$
a_{n_{1}+1}-\frac{1}{2}<x_{n_{2}} \leq a_{n_{1}+1}
$$

since

$$
a_{n+1}=\sup \left\{x_{k} \mid k \geq n_{1}+1\right\} .
$$

Similarly, $\exists n_{3}>n_{2}$ such that

$$
a_{n_{2}+1}-\frac{1}{3}<x_{n_{3}} \leq a_{n_{2}+1} .
$$

Continuing in this way, we obtain a sequence of integers $n_{1}<n_{2}<n_{3}<\ldots$ such that

$$
a_{n_{k}+1}-\frac{1}{k+1}<x_{n_{k}} \leq a_{n_{k}+1} .
$$

Given $\lim _{k \rightarrow \infty} a_{n_{k}+1}=\lim \sup _{n \rightarrow \infty} x_{n}$, by the Squeeze Theorem,

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=\limsup _{n \rightarrow \infty} x_{n} .
$$

The direction for the lim inf works out the same way so that portion of the proof is left to the reader.
Theorem 8 (Bolzano-Weierstrass)
Every bounded sequence has a convergent subsequence.

Remark 9. We may abbreviate the Bolzano-Weierstrass theorem to $B-W$.
Proof: This follows immediately from the previous theorem, but is so important that it itself is a theorem.
Notation 10
When it is clear, we may have the following notational shorthand: $\lim _{\inf }{ }_{n \rightarrow \infty} x_{n}:=\lim \inf x_{n}$, and $\lim \sup _{n \rightarrow \infty} x_{n}:=\lim \sup x_{n}$.

## Theorem 11

Let $\left\{x_{n}\right\}$ be a bounded sequence. Then, $\left\{x_{n}\right\}$ converges if and only if $\lim \inf x_{n}=\lim \sup x_{n}$.

Proof $(\Longleftarrow)$ Suppose $\lim \inf x_{n}=\lim \sup x_{n}$. Then, $\forall n \in \mathbb{N}$,

$$
\inf \left\{x_{k} \mid k \geq n\right\} \leq x_{n} \leq \sup \left\{x_{k} \mid k \geq n\right\} .
$$

By the Squeeze Theorem, since $\lim _{k \rightarrow \infty} \inf \left\{x_{k} \mid k \geq n\right\}=\lim _{k \rightarrow \infty} \sup \left\{x_{k} \mid k \geq n\right\}$ by assumption, we have

$$
\lim _{n \rightarrow \infty} x_{n}=\liminf x_{n}=\lim \sup x_{n} .
$$

Therefore, $x_{n}$ converges.
$(\Longrightarrow)$ Let $x=\lim _{n \rightarrow \infty} x_{n}$. Therefore, every subsequence of $\left\{x_{n}\right\}$ converges to $x$, so $\lim \inf x_{n}=x$ and $\lim \sup x_{n}=x$ by a theorem we proved in Lecture 7. Hence, $\lim \inf x_{n}=\lim \sup x_{n}$.

MIT OpenCourseWare
https://ocw.mit.edu

### 18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

