Recitation 01

To-do list:

1. Proving the AM-GM inequality and introducing proof by mathematical induction.
2. Exercise 1.2.10:

Given that $A, B \subset \mathbb{R}_{>0}$ (both bounded and nonempty), consider the set

$$
C:=\{a \cdot b \mid a \in A, b \in B\}
$$

(where $:=$ means that we are defining C to be that way). Show that $\sup C=\sup A \cdot \sup B$.

The Arithmetic Mean-Geometric Mean inequality (abbreviated as AM-GM) states that for n nonnegative real numbers x_{1}, \ldots, x_{n},

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \ldots x_{n}}
$$

In the homework, y'all proved the base case of $n=2$. Note that this inequality is true for $n=1$, but this is a more trivial statement $\left(\frac{x_{1}}{1} \geq \sqrt[1]{x_{1}}\right)$.

Normally we could try to use Standard Induction to prove this:

1. First prove the base case (which is already done).
2. Then, assume the statement is true for some k and show that this implies the statement is true for $k+1$ (where k is an arbitrary natural number).

However, we will instead use a new method that is similar to Standard Induction:

1. Prove that the statement is true for $n=2^{k}$ using induction.
2. Then, show this implies it is true for all natural numbers.

The case where $k=1$ was done in the homework. So now, assume that the AM-GM inequality is true for some k. Then, we want to show that the inequality is true for $k+1$:

$$
\frac{x_{1}+\cdots+x_{2^{k+1}}}{2^{k+1}}=\frac{\left(x_{1}+\cdots+x_{2^{k}}\right)+\left(x_{2^{k}+1}+\cdots+x_{2^{k+1}}\right)}{2^{k+1}}
$$

Notice that we haven't changed anything here, but we have separated the sum of 2^{k+1} terms into to sums of 2^{k} terms. This allows us to apply what we have assumed:

$$
\begin{aligned}
& \geq \frac{2^{k} \cdot\left(\sqrt[2^{k}]{x_{1} \ldots x_{2^{k}}}+\sqrt[2^{k}]{x_{2^{k}+1} \ldots x_{2^{k+1}}}\right)}{2^{k+1}} \\
& =\frac{\left(\sqrt[2^{k}]{x_{1} \ldots x_{2^{k}}}+\sqrt[2^{k}]{x_{2^{k}+1} \ldots x_{2^{k+1}}}\right.}{2}
\end{aligned}
$$

Now we can apply the base case with $k=1$:

$$
\begin{aligned}
& \geq \sqrt{2 \sqrt[k]{x_{1} \cdots x_{2^{k}}} \cdot \sqrt[2]{k} \sqrt{x_{2^{k}+1} \cdots x_{2^{k+1}}}} \\
& =\sqrt[2 k+1]{x_{1} \ldots x_{2^{k+1}}}
\end{aligned}
$$

Thus, we have shown the AM-GM inequality is true for $n=2^{k}$ for all $k \in \mathbb{N}$. To show the AM-GM inequality is true for all n (not just those which are powers of 2) we want to find the nearest $m \geq n$ such that $m=2^{k}$ for some
nonnegative integer k. Let

$$
\mu=\frac{x_{1}+\cdots+x_{n}}{n}
$$

and let $x_{n+1}=x_{n_{2}}=\cdots=x_{m}=\mu$. Hence,

$$
\begin{aligned}
\mu & =\frac{x_{1}+\cdots+x_{n}}{n} \\
& =\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m} \\
& =\frac{x_{1}+\cdots+x_{n}+\frac{m-n}{n}\left(x_{1}+\cdots+x_{n}\right)}{m} \\
& =\frac{x_{1}+\cdots+x_{n}+\left(x_{n+1}+\cdots+x_{m}\right)}{m} .
\end{aligned}
$$

Applying the AM-GM inequality since $m=2^{k}$:

$$
\begin{aligned}
\mu & \geq \sqrt[m]{x_{1} \ldots x_{m}} \\
\mu & \geq \sqrt[m]{x_{1} \ldots x_{n} \cdot \mu^{m-n}}
\end{aligned}
$$

Moving all the μ to the left hand side and dealing with exponents, we get

$$
\mu \geq \sqrt[n]{x_{1} \ldots x_{n}}
$$

Since μ is the arithmetic mean, we are complete with our proof.
Now we will work on Exercise 1.2.10.
Step 1: We want to show that C is bounded (i.e. that the supremum exists). Given that A is bounded, there exists an α such that $a \leq \alpha$ for all $a \in A$. Similarly, there exists a β such that $b \leq \beta$ for all $b \in B$. Hence, since A and B only contain positive numbers, $a b \leq \alpha \beta$ for all $a \in A$ and all $b \in B$. Therefore, C must be bounded as C is the set of all such $a b$. Proving the existence of a supremum is almost always the first step in proving a statement like this one.

Step 2: Now that we know it exists, we want to show that $\sup C=\sup A \cdot \sup B$. We can do this by showing that

$$
\sup C \leq \sup A \cdot \sup B \quad \text { and } \quad \sup C \geq \sup A \cdot \sup B
$$

(a very common technique in analysis). It is clear that

$$
\begin{cases}0 \leq a \leq \sup A & \forall a \in A \\ 0 \leq b \leq \sup B & \forall b \in B\end{cases}
$$

Hence, $a b \leq \sup A \cdot \sup B$ for all $a b \in C$. Hence, $\sup A \cdot \sup B$ is an upper bound for C, and thus

$$
\sup C \leq \sup A \cdot \sup B
$$

Now for the other direction. Fix $b \in B$ (noting of course that $b>0$ for all $b \in B$). Then, $a \leq \frac{\sup C}{b}$ for all $a \in A$. This implies that $\frac{\sup C}{b}$ is an upper bound for A. Since $\sup A$ is the least upper bound for A, this implies that for all $b \in B$,

$$
\sup A \leq \frac{\sup C}{b} \Longrightarrow b \leq \frac{\sup C}{\sup A} \forall b \in B
$$

Note that $\sup A \neq 0$ as $A \neq \emptyset$, and $A \subset \mathbb{R}_{>0}$. Therefore, $\frac{\sup C}{\sup A}$ is an upper bound for B, and hence

$$
\sup B \leq \frac{\sup C}{\sup A} \Longrightarrow \sup A \cdot \sup B \leq \sup C
$$

Therefore, $\sup C=\sup A \cdot \sup B$.
We leave the following exercise to the student: Show that given $A, B \subset \mathbb{R}_{\geq 0}$ (such that A and B are bounded and nonempty), and C defined just as before, then $\sup C=\sup A \cdot \sup B$. The only difference between this exercise and 1.2 .10 is that before we were dealing with sets of only positive numbers, and now we want to include the possibility that A and/or B contain 0 .

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

