Recitation 02

To-do list:

- 1. Discuss idea behind supremum and infimum proofs, with question 7 of the homework as an example.
- 2. Discuss diagonalization arguments.

Let's start, where else, but the beginning. With infimum and supremum proofs, we are often asked to show that the supremum and/or the infimum exists and then show that they satisfy a certain property. We had a similar problem during the first recitation:

Problem 1

Given $A, B \subset \mathbb{R}_{>0}$ are bounded and nonempty sets, and given the set $C := \{a + b \mid a \in A, b \in B\}$, show that $\sup C = \sup A \cdot \sup B$.

However, we did this problem last time, and will focus on a new one: Problem 7 from PSET 2.

Problem 2 Show that the set

$$X := \{a \in \mathbb{R} \mid a^3 < 2, a > 0\}$$

has a supremum, and that $(\sup X)^3 = 2$.

In these sorts of proofs, there are few key steps:

- 1. Show that the set X is bounded, which them implies it must have a supremum as a property of the real numbers.
- 2. Show that $\sup X = r \in \mathbb{R}$. To do this, we usually show that $\sup X \ge r$ and $\sup X \le r$.

Let's go through these steps in this problem. Based on the very definition of the set X, we know it must be bounded, as there doesn't exist an element of X less than 0, and there certainly aren't any elements greater than 3 (the choice of 3 is arbitrary but sufficient to show it is bounded). Thus, we just have to do step 2. Here, we want to show that $(\sup X)^3 = 2$, and thus want to show that $(\sup X)^3 \le 2$ and $(\sup X)^3 \ge 2$. Let $\sup X = r$ for simplicity.

Assume for the sake of contradiction that $r^3 > 2$. Let's try to intuitively understand why this should give a contradiction. Given this is the case, then we should be able to subtract a "small" h > 0 from r such that $(r-h)^3 > 2$, and then r-h is still an upper bound for X. This would be a contradiction, as the supremum is the **least** upper bound. However, we still need to make this proof more formal by explicitly saying what h is. To do this, consider the following:

$$(r-h)^3 = r^3 - 3r^2h + 3rh^2 - h^3$$
$$= r^3 - 3r^2h + h^2(3r-h)$$

Notice that if we can find an h such that $r^3 - 3r^2h \ge 2$, and such that 3r - h > 0, then we will have that $(r - h)^3 > 2$. This would be the contradiction we discussed earlier, and then $(\sup X)^3 \le 2$. We would have to do something similar for $r^3 < 2$ and reach a contradiction, but at this point we leave the rest as an exercise for the reader.

Now, lets discuss the second item on our to-do list: Diagonalization Arguments. We can use this sort of argument to prove some really statements, such as the following:

A For any set A, $|\mathcal{P}(A)| > |A|$.

B The set of real numbers is uncountable, i.e. $|\mathbb{R}| > |\mathbb{N}|$.

We will first prove statement B, and then statement A.

Assume that there exists a bijection between \mathbb{R} and \mathbb{N} . If this is the case, then we can list the elements of \mathbb{R} and put them into a table:

	\mathbb{R}					
1	2.	7	1	8	2	
2	1.	6	1	8	0	
3	2. 1. 3.	1	4	1	5	
:			:			

For each real number in the row *i*, take the *i*-th digit (as shown by the bold numbers in the table above). Then consider the real number with those diagonal elements: x = 2.64...x differs from the *i*-th real number in the *i*-th decimal point, which implies that *x* cannot be on this table! This is a contradiction, as we assumed that every real number was on this list (as we assumed there existed a bijection). Therefore, \mathbb{R} is uncountable and furthermore $|\mathbb{R}| > |\mathbb{N}|$.

Now we prove statement A in a similar way. Assume that there exists a bijection

$$g: A \to \mathcal{P}(A).$$

Consider the set $T = \{a \in A \mid a \notin g(a)\} \in \mathcal{P}(A)$. For every $a \in A$, either a is in T or not. If a is in T, then a is not in g(a), and then $T \neq g(a)$. On the other hand if a is not in T, then a is in g(a), which again means $T \neq f(a)$. In any case, $T \neq g(a)$. Therefore, there exists an element of $\mathcal{P}(A)$ that isn't achieved by the bijection g, which means g is not a bijection. One can see this argument through a table just as we did to show $|\mathbb{R}| > |\mathbb{N}|$. \Box Here, T is

$\mathcal{P}(A) \ A$	x_1	x_2	x_3	
$g(x_1)$	1	1	0	
$g(x_2)$	0	0	1	
$g(x_3)$	1	0	1	
:		:		
•		•		

the set x_i s that give value 1 on the diagonal (again shown with the bold numbers).

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.