Recitation 05

To-do list:

1. First we will answer any questions there may be on PSETs and lectures.
2. Discuss $\epsilon-\delta$ limits with some examples.

We first discussed PSET 3 Problem 5: proving whether or not \mathbb{Q} is open. Recall that a set $U \subset \mathbb{R}$ is open if $\forall x \in U$ there exists an $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset U$. In this problem, we have $U=\mathbb{Q}$. Well, if \mathbb{Q} is open, then for all $q \in \mathbb{Q}$, then there exist an $\epsilon>0$ such that $(q-\epsilon, q+\epsilon) \subset \mathbb{Q}$. Is this true? It isn't! Consider problem 1 , in which we saw that for all $x, y \in \mathbb{R}$ with $x<y$, there exists an $r \in \mathbb{R} \backslash \mathbb{Q}$ with $x<r<y$. Given $q-\epsilon, q+\epsilon \in \mathbb{R}$ for all $\epsilon>0$, there must exist an $r \in \mathbb{R} \backslash \mathbb{Q}$ such that $q-\epsilon<r<q+\epsilon$, and hence $r \in(q-\epsilon, q+\epsilon)$. Therefore, for all $\epsilon>0,(q-\epsilon, q+\epsilon) \not \subset \mathbb{Q}$.

We now move on to the second item on our agenda: $\epsilon-\delta$ limits. We actually did an $\epsilon-\delta$ proof in the last recitation (simply chance ϵ^{\prime} to δ in that proof. Let's try and build up the intuition behind these sorts of problems.

Example 3

Suppose that $x_{n}>0$ for all $n \in \mathbb{N}$ and suppose that $x_{n} \rightarrow x>0$. Show that

$$
x_{n}^{\frac{1}{3}} \rightarrow x^{\frac{1}{3}}
$$

To rephrase this, we want to show that for all $\epsilon>0$, there exists N such that $\forall n>N,\left|x_{n}^{\frac{1}{3}}-x^{\frac{1}{3}}\right|<\epsilon(*)$. All that we know is that for all $\delta>0, \exists N^{\prime}$ such that $\forall n>N^{\prime},\left|x_{n}-x\right|<\delta\left(\right.$ as $\left.x_{n} \rightarrow x\right)$.

Let's rewrite $(*)$. Using the fact that

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

we can state that

$$
\left|x_{n}^{\frac{1}{3}}-x^{\frac{1}{3}}\right|=\frac{\left|x_{n}-x\right|}{\left|x_{n}^{\frac{2}{3}}+x_{n}^{\frac{1}{3}} \cdot x^{\frac{1}{3}}+x^{\frac{2}{3}}\right|}
$$

(by letting $a=x_{n}^{\frac{1}{3}}$ and $b=x^{\frac{1}{3}}$). Note that the denominator is nonzero based off of assumptions in the problem. (Note that it is usually a good sign when our approach utilizes all/most of the constraints on a problem.) Furthermore, by making the denominator smaller we make the fraction bigger, and hence we have

$$
\left|x_{n}^{\frac{1}{3}}-x^{\frac{1}{3}}\right|=\frac{\left|x_{n}-x\right|}{\left|x_{n}^{\frac{2}{3}}+x_{n}^{\frac{1}{3}} \cdot x^{\frac{1}{3}}+x^{\frac{2}{3}}\right|} \leq \frac{\left|x_{n}-x\right|}{x^{\frac{2}{3}}}
$$

Using the fact that $x_{n} \rightarrow x$, we can pick $\delta=\epsilon \cdot x^{\frac{2}{3}}>0$. Hence, given this value of $\delta, \exists N^{\prime}$ such that

$$
\left|x_{n}-x\right|<\delta=\epsilon \cdot x^{\frac{2}{3}}
$$

Hence, for all $\epsilon>0$ and $n>N^{\prime}$,

$$
\left|x_{n}^{\frac{1}{3}}-x^{\frac{1}{3}}\right|=\frac{\left|x_{n}-x\right|}{\left|x_{n}^{\frac{2}{3}}+x_{n}^{\frac{1}{3}} \cdot x^{\frac{1}{3}}+x^{\frac{2}{3}}\right|} \leq \frac{\left|x_{n}-x\right|}{x^{\frac{2}{3}}} \leq \frac{\epsilon \cdot x^{\frac{2}{3}}}{x^{\frac{2}{3}}}=\epsilon
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

