Practice Quiz 2

18.100B R2 Fall 2010

Closed book, no calculators.

YOUR NAME: _____

This is a 30 minute in-class exam. No notes, books, or calculators are permitted. Point values are indicated for each problem. Do all the work on these pages.

	GRADING	
1.		/15
2.		/20
3.		/10
4.		/20
тот	AL	
	/	65

Problem 1. [5+5+5 points]

Let (X, d) be a metric space.

(a) State the definition of a connected subset of *X* via separated sets, as in Rudin.

(b) Let (X, d) be connected (i.e. *X* is connected as a subset of (X, d)). Show that a subset $A \subset X$ is both open and closed if and only if $A = \emptyset$ or A = X. (This was a homework problem, but the task is to reprove this fact.)

(c) Suppose that (X, d) is a metric space with the following property: A subset $A \subset X$ is both open and closed if and only if $A = \emptyset$ or A = X. Then show that (X, d) is connected (i.e. *X* is connected as a subset of (X, d)).

Problem 2. [10+10 points]

(a) Find $\liminf_{n\to\infty}$ and $\limsup_{n\to\infty}$ for each of the following sequences.

Are these sequences bounded and/or convergent?

$$a_n = \sin\left(\frac{n\pi}{4}\right), \qquad b_n = \frac{(-1)^n}{n^{3/2}}.$$

(b) Let (a_n) , (b_n) and (c_n) be sequences in \mathbb{R} such that for all $n \ge N$ we have $a_n \le b_n \le c_n$. Assume also that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ for some real number L. Prove that $\lim_{n\to\infty} b_n = L$. **Problem 3.** [10 points] Assume that $\sum_{n=1}^{\infty} a_n$ is a convergent series and that $a_n \ge 0$ for all $n \ge N$. Prove that $\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{|a_n|}$ converges. (Hint: You can use the general inequality $2xy \le x^2 + y^2$ for $x, y \in \mathbb{R}$.)

Problem 4. [20 points: +4 for each correct, -4 for each incorrect; no proofs required.] (Hint: Note the penalty – it may be wise to leave some questions unanswered.)

a) Let (X, d) be a metric space, and let $E \subset X$. Then the closure of E is equal to the set L(E) of all limits of sequences in E:

$$L(E) = \{ x \in X \mid \exists (x_n)_{n \in \mathbb{N}} \subset E : \lim_{n \to \infty} x_n = x \}.$$

TRUE FALSE

b) If $\sum_{n=1}^{\infty} a_n$ is convergent and $a_n \ge 0$ then $a_n \to 0$.

TRUE FALSE

c) The subset $\{z \in \mathbb{Q} \mid |z| < 1\}$ of \mathbb{Q} is connected.

TRUE FALSE

d) Let (x_n) be a sequence in the metric space (X, d) such that $d(x_n, x_{n+1}) \leq \frac{1}{n}$. Then (x_n) is a Cauchy sequence.

TRUE FALSE

e) Suppose $\sum_{n=1}^{\infty} c_n z^n$ is a power series with convergence radius R = 2 and such that it converges for z = 2. Then it converges for all other $z \in \mathbb{C}$ with |z| = 2.

TRUE FALSE

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.