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Lecture 8


3.2 Riemann Integral of Several Variables 

Last time we defined the Riemann integral for one variable, and today we generalize 
to many variables. 

Definition 3.3. A rectangle is a subset Q of Rn of the form 

Q = [a1, b1]× · · · × [an, bn], (3.10) 

where ai, bi ∈ R. 

Note that x = (x1, . . . , xn) ∈ Q ⇐⇒ ai ≤ xi ≤ bi for all i. The volume of the 
rectangle is 

v(Q) = (b1 − a1) n − an), (3.11) · · · (b

and the width of the rectangle is 

width(Q) = sup(bi − ai). (3.12) 
i 

Recall (stated informally) that given [a, b] ∈ R, a finite subset P of [a, b] is a 
partition of [a, b] if a, b ∈ P and you can write P = {ti : i = 1, . . . , N}, where 
t1 = a < t2 < . . . < tN = b. An interval I belongs to P if and only if I is one of the 
intervals [ti, ti+1]. 

Definition 3.4. A partition P of Q is an ntuple (P1, . . . , Pn), where each Pi is a 
partition of [ai, bi]. 

Definition 3.5. A rectangle R = I1 × · · · × In belongs to P if for each i, the interval 
Ii belongs to Pi. 

Let f : Q → R be a bounded function, let P be a partition of Q, and let R be a 
rectangle belonging to P . 

We define 

mRf = inf f = g.l.b. {f(x) : x ∈ R}
R 

(3.13) 
MRf = sup f = l.u.b. {f(x) : x ∈ R}, 

R 

from which we define the lower and upper Riemann sums, 

L(f, P ) = mR(f)v(R) 
R� (3.14) 

U(f, P ) = MR(f)v(R). 
R 
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It is evident that 
L(f, P ) ≤ U(f, P ). (3.15) 

Now, we will take a sequence of partitions that get finer and finer, and we will 
define the integral to be the limit. 

Let P = (P1, . . . , Pn) and P � = (P1
�, . . . , Pn

� ) be partitions of Q. We say that P � 

refines P if Pi
� ⊃ Pi for each i. 

Claim. If P � refines P , then 

L(f, P �) ≥ L(f.P ). (3.16) 

Proof. We let Pj = Pj
� for j =� i, and we let P � = a}, where a ∈ [ai, bi]. We i Pi ∪ {

can create any refinement by multiple applications of this basic refinement. If R is a 
rectangle belonging to P , then either 

1. R belongs to P �, or 

2. R = R� ∪R��, where R�, R�� belong to P �. 

In the first case, the contribution of R to L(f, P �) equals the contribution of R to 
L(f, P ), so the claim holds. 

In the second case, 
mRv(R) = mR(v(R�) + v(R��)) (3.17) 

and 
mr = inf 

R 
f ≤ inf 

R� 
f, inf 

R�� 
f. (3.18) 

So, 
mR ≤ mR� ,mR�� (3.19) 

Taken altogether, this shows that 

mRv(R) ≤ mR v(R
�) + mR�� v(R��) (3.20) 

Thus, R� and R�� belong to P �. 

Claim. If P � refines P , then 

U(f, P �) ≤ U(f, P ) (3.21) 

The proof is very similar to the previous proof. Combining the above two claims, 
we obtain the corollary 

Corollary 2. If P and P � are partitions, then 

U(f, P �) ≥ L(f, P ) (3.22) 
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Proof. Define P �� = (P1 ∪ P1
�, . . . , Pn ∪ Pn

� ). So, P �� refines P and P �. We have shown 
that 

U(f, P ��) ≤ U(f, P ) 

L(f, P �) ≤ L(f, P ��) (3.23) 

L(f, P ��) ≤ U(f, P ��). 

Together, these show that 
U(f, P ) ≥ L(f, P �). (3.24) 

With this result in mind, we define the lower and upper Riemann integrals: 

f = sup L(f, P ) 
PQ� (3.25) 

f = inf U(f, P ). 
Q P 

Clearly, we have 

f, (3.26) f ≤ 
Q Q 

Finally, we define Riemann integrable. 

Definition 3.6. A function f is Riemann integrable over Q if the lower and upper 
Riemann integrals coincide (are equal). 

3.3 Conditions for Integrability 

Our next problem is to determine under what conditions a function is (Riemann) 
integrable. 

Let’s look at a trivial case: 

Claim. Let F : Q → R be the constant function f(x) = c. Then f is R. integrable 
over Q, and 

c = cv(Q). (3.27) 
Q 

Proof. Let P be a partition, and let R be a rectangle belonging to P . We see that 
mR(f) = MR(f) = c, so 

U(f, P ) = MR(f)v(R) = c v(R) 
R R (3.28) 

= cv(Q). 

3




� 

� 

� 

� 

Similarly, 
L(f, P ) = cv(Q). (3.29) 

Corollary 3. Let Q be a rectangle, and let {Qi : i = 1, . . . , N} be a collection of 
rectangles covering Q. Then 

v(Q) ≤ v(Qi). (3.30) 

Theorem 3.7. If f : Q→ R is continuous, then f is R. integrable over Q. 

Proof. We begin with a definition 

Definition 3.8. Given a partition P of Q, we define 

mesh width(P ) = sup width(R). (3.31) 
R 

Remember that 

Q compact = ⇒ f : Q→ R is uniformly continuous. (3.32) 

That is, given � > 0, there exists δ > 0 such that if x, y ∈ Q and x − y < δ, then | |
f(x)− f(y) < �.||

Choose a partition P of Q with mesh width less than δ. Then, for every rectangle 
R belonging to P and for every x, y ∈ R, we have x− y < δ. By uniform continuity | |
we have, MR(f)− mR(f) ≤ �, which is used to show that 

U(f, P )− L(f, P ) = (MR(f)− mR(f))v(R) 
R 

≤ � (3.33) 
v(R) 

≤ �v(Q). 

We can take �→ 0, so 
sup L(f, P ) = inf U(f, P ), (3.34) 

P P 

which shows that f is integrable. 

We have shown that continuity is sufficient for integrability. However, continuity 
is clearly not necessary. What is the general condition for integrability? To state the 
answer, we need the notion of measure zero. 

Definition 3.9. Suppose A ⊆ Rn . The set A is of measure zero if for every � > 
0, there exists a countable covering of A by rectangles Q1, Q2, Q3, . . . such that 

v(Qi) < �. 
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Theorem 3.10. Let f : Q → R be a bounded function, and let A ⊆ Q be the set 
of points where f is not continuous. Then f is R. integrable if and only if A is of 
measure zero. 

Before we prove this, we make some observations about sets of measure zero: 

1. Let A,B ⊆ Rn and suppose B ⊂ A. If A is of measure zero, then B is also of 
measure zero. 

2. Let Ai ⊆ Rn for i = 1, 2, 3, . . . , and suppose the Ai’s are of measure zero. Then 
∪Ai is also of measure zero. 

3. Rectangles are not of measure zero. 

We prove the second observation: 
For any � > 0, choose coverings Qi,1, Qi,2, . . . of Ai such that each covering has 

total volume less than �/2i . Then {Qi,j } is a countable covering of ∪Ai of total volume 

∞

= �. (3.35) 
2i 

i=1 
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