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Lecture 18

We begin with a quick review of permutations (from last lecture). 
A permutation of order k is a bijective map σ : {1, . . . , k} → {1, . . . , k}. We 

denote by Sk the set of permutations of order k. 
The set Sk has some nice properties. If σ ∈ Sk, then σ−1 ∈ Sk. The inverse 

permutation σ−1 is defined by σ−1(j) = i if σ(i) = j. Another nice property is that 
if σ, τ ∈ Sk, then στ ∈ Sk, where στ(i) = σ(τ(i)). That is, if τ(i) = j and σ(j) = k, 
then στ(i) = k. 

Take 1 ≤ i < j ≤ k, and define 

τi,j (i) = j (4.40) 

τi,j (j) = i (4.41) 

τi,j (�) = �, � �= i, j. (4.42) 

The permutation τi,j is a transposition. It is an elementary transposition of j = i+1. 
Last time we stated the following theorem. 

Theorem 4.13. Every permutation σ can be written as a product 

σ = τ1τ2 τr, (4.43) · · ·

where the τi’s are elementary transpositions. 

In the above, we removed the symbol ◦ denoting composition of permutations, 
but the composition is still implied. 

Last time we also defined the sign of a permutation 

Definition 4.14. The sign of a permutation σ is (−1)σ = (−1)r, where r is as in the 
above theorem. 

Theorem 4.15. The above definition of sign is welldefined, and 

(−1)στ = (−1)σ(−1)τ . (4.44) 

All of the above is discussed in the Multilinear Algebra Notes. 
Part of today’s homework is to show the following two statements: 

1. |Sk| = k!. The proof is by induction. 

2. (−1)τi,j = −1. Hint: use induction and τi,j = (τj−1,j)(τi,j−1)(τj−1,j), with i < j. 

We now move back to the study of tensors. Let V be an ndimensional vector 
space. We define 

V k = V × · · · × V . (4.45) 

k factors 
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We define Lk(v) to be the space of all klinear functions T : V k → R. If Ti ∈ Lki , i = 
1, 2, and k = k1 + k2, then T1 ⊗ T2 ∈ Lk . Decomposable ktensors are of the form 
T = �1 ⊗ · · · ⊗ �k, where each �i ∈ L1 = V ∗. Note that �1 ⊗ · · · ⊗ �k(v1, . . . , vk) = 
�1(v1) . . . �k(vk). 

We define a permutation operation on tensors. Take σ ∈ Sk and T ∈ Lk(V ). 

Definition 4.16. We define the map T σ : V k R by →

T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)). (4.46) 

Clearly, T σ ∈ Lk(V ). We have the following useful formula: 

Claim. 
T τσ (T σ)τ = . (4.47) 

Proof. 

T τσ(v1, . . . , vk) = T (vσ−1(τ−1(1)), . . . , vσ−1(τ−1(k))) 

= T σ(vτ−1(1), . . . , vτ−1(k)) (4.48) 

= (T σ)τ (v1, . . . , vk). 

Let us look at what the permutation operation does to a decomposable tensor 
T = �1 ⊗ · · · ⊗ �k. 

T σ(v1, . . . , vk) = �1(vσ−1(1)) . . . �k(vσ−1(k)). (4.49) 

The ith factor has the subscript σ−1(i) = j, where σ(j) = i, so the the ith factor is 
�σ(j)(vj). So 

T σ(v1, . . . , vk) = �σ(1)(v1) . . . �σ(k)(vk) 
(4.50) 

= (�σ(1) ⊗ · · · ⊗ �σ(k))(v1, . . . , vk). 

To summarize, � 
T = 

�σ(1) ⊗ · · · ⊗ �σ(k). 
(4.51) 

�1 ⊗ · · · ⊗ �k 

T σ = 

Proposition 4.17. The mapping T ∈ Lk T σ ∈ Lk is linear. →

We leave the proof of this as an exercise. 

Definition 4.18. A tensor T ∈ Lk(V ) is alternating if T σ = (−1)σT for all σ ∈ Sk. 

Definition 4.19. We define 

k(V ) = the set of all alternating ktensors. (4.52) A
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By our previous claim, Ak is a vector space.

The alternating operator Alt can be used to create alternating tensors.


Definition 4.20. Given a ktensor k(V ), we define the alternating operator T ∈ L
Alt : Lk(V ) → Ak(V ) by 

Alt (T ) = (−10)τT τ . (4.53) 
τ∈Sk 

Claim. The alternating operator has the following properties: 

1. Alt (T ) ∈ Ak(V ), 

2. If T ∈ Ak(V ), then Alt (T ) = k!T , 

3. Alt (T σ) = (−1)σ Alt (T ), 

4. The map Alt : Lk(V ) → Ak(V ) is linear. 

Proof. 1. � 
Alt (T ) = (−1)τT τ , (4.54) 

τ 

so 

Alt (T )σ = (−1)τ (T τ )σ 

τ 

= (−1)τT στ 

τ (4.55) 

= (−1)σ (−1)στT στ 

στ 

= (−1)σ Alt (T ). 

2. � 
Alt (T ) = (−1)τT τ , (4.56) 

τ 

but T τ = (−1)τT , since T ∈ Ak(V ). So 

Alt (T ) = (−1)τ (−1)τT 
τ (4.57) 

= k!T. 

3. 

Alt (T σ) = (−1)τ (T σ)τ 

τ 

= (−1)τT τσ 

τ (4.58) 

= (−1)σ (−1)τσT τσ 

τσ 

= (−1)σ Alt (T ). 
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4. We leave the proof as an exercise. 

Now we ask ourselves: what is the dimension of Ak(V )? To answer this, it is best 
to write a basis. 

Earlier kwe found a basis for L
to be a basis of V ∗

. We defined e1, . . . , en to be a basis of V and 
∗ 
n 

∗, . . . , e1 . We then considered multiindices I =
(i1, . . . , ik), 1 ≤
, I a multiindex} to be a basis of Lk For 

e

ir ≤ n and defined {e
any multiindex J = (j1, . . . , jk), we had 

∗ ⊗ · · · ⊗ ei1 
∗ 
I 

∗ 
ik

= e . 

1 if I = J , 
(4.59) ∗( )e , . . . , ej jI 1 k

e
 = 
0 if I = J . 

Definition 4.21. A multiindex I = (i1, . . . , ik) is repeating if ir = is for some r < s. 

Definition 4.22. The multiindex I is strictly increasing if 1 ≤ i1 < . . . < ik ≤ n. 

Notation. Given σ ∈ Sk and I = (i1, . . . , ik), we denote Iσ = (iσ(1), . . . , iσ(k)). 

Remark. If J is a nonrepeating multiindex, then there exists a permutation σ such 
that J = Iσ, where I is strictly increasing. 

σ∗)I .
 (4.60)
∗eJ 
∗ 

σI = e
 ∗ 
σ(i )k

∗ ⊗ · · · ⊗ eσ(i )1
=
(e
= e


∗).IDefine ψI = Alt (e

Theorem 4.23. 1. ψIσ = (−1)σψI , 

2. If I is repeating, then ψI = 0, 

3. If I, J are strictly increasing, then � 

ψI(ej1 , . . . , ejk
) = 

1 

0 

if I = J , 

if I �= J . 
(4.61) 

Proof. 1. 

∗ 
σIψIσ = Alt e

σ∗)IAlt ((e )= 
(4.62) 

= (−1)σ Alt e

= (−1)σψI . 

∗ 
I 

2. Suppose that I is repeating. Then I = Iτ for some transposition τ . So ψI = 
(−1)τψI . But (as you proved in the homework) (−1)τ = −1, so ψI = 0. 
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3. 

ψI = Alt (e∗)I

(4.63) = (−1)τ e
τ 

so � 

∗ ,τI

ψI(ej1 , . . . , ejk
) = (−1)τ e∗ ( )e , . . . , ej jτI 1 k

(4.64) 
τ 8 >< >: 

1 if Iτ = J, 

0 if Iτ = J . 

But Iτ = J only if τ is the identity permutation (because both Iτ and J are 
strictly increasing). The only nonzero term in the sum is when τ is the identity 
permutation, so 

1 if I = J ,
ψI(ej1 , . . . , ejk

) = (4.65) 
0 if I = J . 

Corollary 5. The alternating ktensors ψI , where I is strictly increasing, are a basis 
of Ak(V ). 

Proof. Take T ∈ Ak(V ). The tensor T can be expanded as T ∗.I So= cIe

Alt (T ) = k! cI Alt (e∗)I
(4.66) 

= k! cIψI . 

If I is repeating, then ψI = 0. If I is nonrepeating, then I = Jσ, where J is strictly 
increasing. Then ψI = (−1)σψJ . 

So, we can replace all multiindices in the sum by strictly increasing multiindices, 

T = aIψI , I’s strictly increasing. (4.67) 

Therefore, the ψI ’s span Ak(V ). Moreover, the ψI ’s are a basis if and only if the ai’s 
are unique. We show that the aI ’s are unique. 

Let J be any strictly increasing multiindex. Then 

T (ej1 , . . . , ejk
) = aIψ(ej1 , . . . , ejk

) 
(4.68) 

= aJ , 

by property (3) of the previous theorem. Therefore, the ψI ’s are a basis of Ak(V ). 
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