## Lecture 18

We begin with a quick review of permutations (from last lecture).
A permutation of order $k$ is a bijective map $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$. We denote by $S_{k}$ the set of permutations of order $k$.

The set $S_{k}$ has some nice properties. If $\sigma \in S_{k}$, then $\sigma^{-1} \in S_{k}$. The inverse permutation $\sigma^{-1}$ is defined by $\sigma^{-1}(j)=i$ if $\sigma(i)=j$. Another nice property is that if $\sigma, \tau \in S_{k}$, then $\sigma \tau \in S_{k}$, where $\sigma \tau(i)=\sigma(\tau(i))$. That is, if $\tau(i)=j$ and $\sigma(j)=k$, then $\sigma \tau(i)=k$.

Take $1 \leq i<j \leq k$, and define

$$
\begin{align*}
\tau_{i, j}(i) & =j  \tag{4.40}\\
\tau_{i, j}(j) & =i  \tag{4.41}\\
\tau_{i, j}(\ell) & =\ell, \ell \neq i, j \tag{4.42}
\end{align*}
$$

The permutation $\tau_{i, j}$ is a transposition. It is an elementary transposition of $j=i+1$. Last time we stated the following theorem.

Theorem 4.13. Every permutation $\sigma$ can be written as a product

$$
\begin{equation*}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{r} \tag{4.43}
\end{equation*}
$$

where the $\tau_{i}$ 's are elementary transpositions.
In the above, we removed the symbol $\circ$ denoting composition of permutations, but the composition is still implied.

Last time we also defined the sign of a permutation
Definition 4.14. The sign of a permutation $\sigma$ is $(-1)^{\sigma}=(-1)^{r}$, where $r$ is as in the above theorem.

Theorem 4.15. The above definition of sign is well-defined, and

$$
\begin{equation*}
(-1)^{\sigma \tau}=(-1)^{\sigma}(-1)^{\tau} \tag{4.44}
\end{equation*}
$$

All of the above is discussed in the Multi-linear Algebra Notes.
Part of today's homework is to show the following two statements:

1. $\left|S_{k}\right|=k$ !. The proof is by induction.
2. $(-1)^{\tau_{i, j}}=-1$. Hint: use induction and $\tau_{i, j}=\left(\tau_{j-1, j}\right)\left(\tau_{i, j-1}\right)\left(\tau_{j-1, j}\right)$, with $i<j$.

We now move back to the study of tensors. Let $V$ be an $n$-dimensional vector space. We define

$$
\begin{equation*}
V^{k}=\underbrace{V \times \cdots \times V}_{k \text { factors }} . \tag{4.45}
\end{equation*}
$$

We define $\mathcal{L}^{k}(v)$ to be the space of all $k$-linear functions $T: V^{k} \rightarrow \mathbb{R}$. If $T_{i} \in \mathcal{L}^{k_{i}}, i=$ 1,2 , and $k=k_{1}+k_{2}$, then $T_{1} \otimes T_{2} \in \mathcal{L}^{k}$. Decomposable $k$-tensors are of the form $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$, where each $\ell_{i} \in \mathcal{L}^{1}=V^{*}$. Note that $\ell_{1} \otimes \cdots \otimes \ell_{k}\left(v_{1}, \ldots, v_{k}\right)=$ $\ell_{1}\left(v_{1}\right) \ldots \ell_{k}\left(v_{k}\right)$.

We define a permutation operation on tensors. Take $\sigma \in S_{k}$ and $T \in \mathcal{L}^{k}(V)$.
Definition 4.16. We define the map $T^{\sigma}: V^{k} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
T^{\sigma}\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(k)}\right) \tag{4.46}
\end{equation*}
$$

Clearly, $T^{\sigma} \in \mathcal{L}^{k}(V)$. We have the following useful formula:

## Claim.

$$
\begin{equation*}
\left(T^{\sigma}\right)^{\tau}=T^{\tau \sigma} . \tag{4.47}
\end{equation*}
$$

Proof.

$$
\begin{align*}
T^{\tau \sigma}\left(v_{1}, \ldots, v_{k}\right) & =T\left(v_{\sigma^{-1}\left(\tau^{-1}(1)\right)}, \ldots, v_{\sigma^{-1}\left(\tau^{-1}(k)\right)}\right) \\
& =T^{\sigma}\left(v_{\tau^{-1}(1)}, \ldots, v_{\tau^{-1}(k)}\right)  \tag{4.48}\\
& =\left(T^{\sigma}\right)^{\tau}\left(v_{1}, \ldots, v_{k}\right)
\end{align*}
$$

Let us look at what the permutation operation does to a decomposable tensor $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$.

$$
\begin{equation*}
T^{\sigma}\left(v_{1}, \ldots, v_{k}\right)=\ell_{1}\left(v_{\sigma^{-1}(1)}\right) \ldots \ell_{k}\left(v_{\sigma^{-1}(k)}\right) . \tag{4.49}
\end{equation*}
$$

The $i$ th factor has the subscript $\sigma^{-1}(i)=j$, where $\sigma(j)=i$, so the the $i$ th factor is $\ell_{\sigma(j)}\left(v_{j}\right)$. So

$$
\begin{align*}
T^{\sigma}\left(v_{1}, \ldots, v_{k}\right) & =\ell_{\sigma(1)}\left(v_{1}\right) \ldots \ell_{\sigma(k)}\left(v_{k}\right)  \tag{4.50}\\
& =\left(\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}\right)\left(v_{1}, \ldots, v_{k}\right)
\end{align*}
$$

To summarize,

$$
\left\{\begin{array}{l}
T=\ell_{1} \otimes \cdots \otimes \ell_{k}  \tag{4.51}\\
T^{\sigma}=\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)} .
\end{array}\right.
$$

Proposition 4.17. The mapping $T \in \mathcal{L}^{k} \rightarrow T^{\sigma} \in \mathcal{L}^{k}$ is linear .
We leave the proof of this as an exercise.
Definition 4.18. A tensor $T \in \mathcal{L}^{k}(V)$ is alternating if $T^{\sigma}=(-1)^{\sigma} T$ for all $\sigma \in S_{k}$.
Definition 4.19. We define

$$
\begin{equation*}
\mathcal{A}^{k}(V)=\text { the set of all alternating } k \text {-tensors. } \tag{4.52}
\end{equation*}
$$

By our previous claim, $\mathcal{A}^{k}$ is a vector space.
The alternating operator Alt can be used to create alternating tensors.
Definition 4.20. Given a $k$-tensor $T \in \mathcal{L}^{k}(V)$, we define the alternating operator Alt : $\mathcal{L}^{k}(V) \rightarrow \mathcal{A}^{k}(V)$ by

$$
\begin{equation*}
\operatorname{Alt}(T)=\sum_{\tau \in S_{k}}(-10)^{\tau} T^{\tau} \tag{4.53}
\end{equation*}
$$

Claim. The alternating operator has the following properties:

1. $\operatorname{Alt}(T) \in \mathcal{A}^{k}(V)$,
2. If $T \in \mathcal{A}^{k}(V)$, then $\operatorname{Alt}(T)=k!T$,
3. $\operatorname{Alt}\left(T^{\sigma}\right)=(-1)^{\sigma} \operatorname{Alt}(T)$,
4. The map Alt: $\mathcal{L}^{k}(V) \rightarrow \mathcal{A}^{k}(V)$ is linear.

Proof. 1.

$$
\begin{equation*}
\operatorname{Alt}(T)=\sum_{\tau}(-1)^{\tau} T^{\tau} \tag{4.54}
\end{equation*}
$$

so

$$
\begin{align*}
\operatorname{Alt}(T)^{\sigma} & =\sum_{\tau}(-1)^{\tau}\left(T^{\tau}\right)^{\sigma} \\
& =\sum_{\tau}(-1)^{\tau} T^{\sigma \tau}  \tag{4.55}\\
& =(-1)^{\sigma} \sum_{\sigma \tau}(-1)^{\sigma \tau} T^{\sigma \tau} \\
& =(-1)^{\sigma} \operatorname{Alt}(T)
\end{align*}
$$

2. 

$$
\begin{equation*}
\operatorname{Alt}(T)=\sum_{\tau}(-1)^{\tau} T^{\tau} \tag{4.56}
\end{equation*}
$$

but $T^{\tau}=(-1)^{\tau} T$, since $T \in \mathcal{A}^{k}(V)$. So

$$
\begin{align*}
\operatorname{Alt}(T) & =\sum_{\tau}(-1)^{\tau}(-1)^{\tau} T  \tag{4.57}\\
& =k!T
\end{align*}
$$

3. 

$$
\begin{align*}
\operatorname{Alt}\left(T^{\sigma}\right) & =\sum_{\tau}(-1)^{\tau}\left(T^{\sigma}\right)^{\tau} \\
& =\sum_{\tau}(-1)^{\tau} T^{\tau \sigma}  \tag{4.58}\\
& =(-1)^{\sigma} \sum_{\tau \sigma}(-1)^{\tau \sigma} T^{\tau \sigma} \\
& =(-1)^{\sigma} \operatorname{Alt}(T) .
\end{align*}
$$

4. We leave the proof as an exercise.

Now we ask ourselves: what is the dimension of $\mathcal{A}^{k}(V)$ ? To answer this, it is best to write a basis.

Earlier we found a basis for $\mathcal{L}^{k}$. We defined $e_{1}, \ldots, e_{n}$ to be a basis of $V$ and $e_{1}^{*}, \ldots, e_{n}^{*}$ to be a basis of $V^{*}$. We then considered multi-indices $I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq$ $i_{r} \leq n$ and defined $\left\{e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*}, I\right.$ a multi-index $\}$ to be a basis of $\mathcal{L}^{k}$. For any multi-index $J=\left(j_{1}, \ldots, j_{k}\right)$, we had

$$
e_{I}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)= \begin{cases}1 & \text { if } I=J  \tag{4.59}\\ 0 & \text { if } I \neq J\end{cases}
$$

Definition 4.21. A multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$ is repeating if $i_{r}=i_{s}$ for some $r<s$.
Definition 4.22. The multi-index $I$ is strictly increasing if $1 \leq i_{1}<\ldots<i_{k} \leq n$.
Notation. Given $\sigma \in S_{k}$ and $I=\left(i_{1}, \ldots, i_{k}\right)$, we denote $I^{\sigma}=\left(i_{\sigma(1)}, \ldots, i_{\sigma(k)}\right)$.
Remark. If $J$ is a non-repeating multi-index, then there exists a permutation $\sigma$ such that $J=I^{\sigma}$, where $I$ is strictly increasing.

$$
\begin{equation*}
e_{J}^{*}=e_{I^{\sigma}}^{*}=e_{\sigma\left(i_{1}\right)}^{*} \otimes \cdots \otimes e_{\sigma\left(i_{k}\right)}^{*}=\left(e_{I}^{*}\right)^{\sigma} \tag{4.60}
\end{equation*}
$$

Define $\psi_{I}=\operatorname{Alt}\left(e_{I}^{*}\right)$.
Theorem 4.23. 1. $\psi_{I^{\sigma}}=(-1)^{\sigma} \psi_{I}$,
2. If $I$ is repeating, then $\psi_{I}=0$,
3. If $I, J$ are strictly increasing, then

$$
\psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)= \begin{cases}1 & \text { if } I=J  \tag{4.61}\\ 0 & \text { if } I \neq J\end{cases}
$$

Proof. 1.

$$
\begin{align*}
\psi_{I^{\sigma}} & =\operatorname{Alt} e_{I^{\sigma}}^{*} \\
& =\operatorname{Alt}\left(\left(e_{I}^{*}\right)^{\sigma}\right) \\
& =(-1)^{\sigma} \operatorname{Alt} e_{I}^{*}  \tag{4.62}\\
& =(-1)^{\sigma} \psi_{I} .
\end{align*}
$$

2. Suppose that $I$ is repeating. Then $I=I^{\tau}$ for some transposition $\tau$. So $\psi_{I}=$ $(-1)^{\tau} \psi_{I}$. But (as you proved in the homework) $(-1)^{\tau}=-1$, so $\psi_{I}=0$.
3. 

$$
\begin{align*}
\psi_{I} & =\operatorname{Alt}\left(e_{I}^{*}\right) \\
& =\sum_{\tau}(-1)^{\tau} e_{I^{\tau}}^{*}, \tag{4.63}
\end{align*}
$$

so

$$
\begin{align*}
& \psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\sum_{\tau}(-1)^{\tau} \underbrace{e_{\tau^{\tau}}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)}  \tag{4.64}\\
& \begin{cases}1 & \text { if } I^{\tau}=J, \\
0 & \text { if } I^{\tau} \neq J .\end{cases}
\end{align*}
$$

But $I^{\tau}=J$ only if $\tau$ is the identity permutation (because both $I^{\tau}$ and $J$ are strictly increasing). The only non-zero term in the sum is when $\tau$ is the identity permutation, so

$$
\psi_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)= \begin{cases}1 & \text { if } I=J  \tag{4.65}\\ 0 & \text { if } I \neq J\end{cases}
$$

Corollary 5. The alternating $k$-tensors $\psi_{I}$, where $I$ is strictly increasing, are a basis of $\mathcal{A}^{k}(V)$.

Proof. Take $T \in \mathcal{A}^{k}(V)$. The tensor $T$ can be expanded as $T=\sum c_{I} e_{I}^{*}$. So

$$
\begin{align*}
\operatorname{Alt}(T) & =k!\sum c_{I} \operatorname{Alt}\left(e_{I}^{*}\right) \\
& =k!\sum c_{I} \psi_{I} . \tag{4.66}
\end{align*}
$$

If $I$ is repeating, then $\psi_{I}=0$. If $I$ is non-repeating, then $I=J^{\sigma}$, where $J$ is strictly increasing. Then $\psi_{I}=(-1)^{\sigma} \psi_{J}$.

So, we can replace all multi-indices in the sum by strictly increasing multi-indices,

$$
\begin{equation*}
T=\sum a_{I} \psi_{I}, I \text { 's strictly increasing. } \tag{4.67}
\end{equation*}
$$

Therefore, the $\psi_{I}$ 's span $\mathcal{A}^{k}(V)$. Moreover, the $\psi_{I}$ 's are a basis if and only if the $a_{i}$ 's are unique. We show that the $a_{I}$ 's are unique.

Let $J$ be any strictly increasing multi-index. Then

$$
\begin{align*}
T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) & =\sum a_{I} \psi\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)  \tag{4.68}\\
& =a_{J}
\end{align*}
$$

by property (3) of the previous theorem. Therefore, the $\psi_{I}$ 's are a basis of $\mathcal{A}^{k}(V)$.

