Lecture 18

We begin with a quick review of permutations (from last lecture).

A permutation of order k is a bijective map $\sigma : \{1, \ldots, k\} \to \{1, \ldots, k\}$. We denote by S_k the set of permutations of order k.

The set S_k has some nice properties. If $\sigma \in S_k$, then $\sigma^{-1} \in S_k$. The inverse permutation σ^{-1} is defined by $\sigma^{-1}(j) = i$ if $\sigma(i) = j$. Another nice property is that if $\sigma, \tau \in S_k$, then $\sigma \tau \in S_k$, where $\sigma \tau(i) = \sigma(\tau(i))$. That is, if $\tau(i) = j$ and $\sigma(j) = k$, then $\sigma \tau(i) = k$.

Take $1 \leq i < j \leq k$, and define

$$\tau_{i,j}(i) = j \tag{4.40}$$

$$\tau_{i,j}(j) = i \tag{4.41}$$

$$\tau_{i,j}(\ell) = \ell, \ell \neq i, j. \tag{4.42}$$

The permutation $\tau_{i,j}$ is a transposition. It is an elementary transposition of j = i + 1. Last time we stated the following theorem.

Theorem 4.13. Every permutation σ can be written as a product

$$\sigma = \tau_1 \tau_2 \cdots \tau_r, \tag{4.43}$$

where the τ_i 's are elementary transpositions.

In the above, we removed the symbol \circ denoting composition of permutations, but the composition is still implied.

Last time we also defined the sign of a permutation

Definition 4.14. The sign of a permutation σ is $(-1)^{\sigma} = (-1)^{r}$, where r is as in the above theorem.

Theorem 4.15. The above definition of sign is well-defined, and

$$(-1)^{\sigma\tau} = (-1)^{\sigma} (-1)^{\tau}. \tag{4.44}$$

All of the above is discussed in the Multi-linear Algebra Notes. Part of today's homework is to show the following two statements:

1. $|S_k| = k!$. The proof is by induction.

2. $(-1)^{\tau_{i,j}} = -1$. Hint: use induction and $\tau_{i,j} = (\tau_{j-1,j})(\tau_{i,j-1})(\tau_{j-1,j})$, with i < j.

We now move back to the study of tensors. Let V be an n-dimensional vector space. We define

$$V^{k} = \underbrace{V \times \dots \times V}_{k \text{ factors}}.$$
(4.45)

We define $\mathcal{L}^k(v)$ to be the space of all k-linear functions $T: V^k \to \mathbb{R}$. If $T_i \in \mathcal{L}^{k_i}, i = 1, 2, \text{ and } k = k_1 + k_2$, then $T_1 \otimes T_2 \in \mathcal{L}^k$. Decomposable k-tensors are of the form $T = \ell_1 \otimes \cdots \otimes \ell_k$, where each $\ell_i \in \mathcal{L}^1 = V^*$. Note that $\ell_1 \otimes \cdots \otimes \ell_k(v_1, \ldots, v_k) = \ell_1(v_1) \ldots \ell_k(v_k)$.

We define a permutation operation on tensors. Take $\sigma \in S_k$ and $T \in \mathcal{L}^k(V)$.

Definition 4.16. We define the map $T^{\sigma}: V^k \to \mathbb{R}$ by

$$T^{\sigma}(v_1, \dots, v_k) = T(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)}).$$
(4.46)

Clearly, $T^{\sigma} \in \mathcal{L}^{k}(V)$. We have the following useful formula:

Claim.

$$(T^{\sigma})^{\tau} = T^{\tau\sigma}.\tag{4.47}$$

Proof.

$$T^{\tau\sigma}(v_1, \dots, v_k) = T(v_{\sigma^{-1}(\tau^{-1}(1))}, \dots, v_{\sigma^{-1}(\tau^{-1}(k))})$$

= $T^{\sigma}(v_{\tau^{-1}(1)}, \dots, v_{\tau^{-1}(k)})$
= $(T^{\sigma})^{\tau}(v_1, \dots, v_k).$ (4.48)

Let us look at what the permutation operation does to a decomposable tensor $T = \ell_1 \otimes \cdots \otimes \ell_k$.

$$T^{\sigma}(v_1, \dots, v_k) = \ell_1(v_{\sigma^{-1}(1)}) \dots \ell_k(v_{\sigma^{-1}(k)}).$$
(4.49)

The *i*th factor has the subscript $\sigma^{-1}(i) = j$, where $\sigma(j) = i$, so the *i*th factor is $\ell_{\sigma(j)}(v_j)$. So

$$T^{\sigma}(v_1, \dots, v_k) = \ell_{\sigma(1)}(v_1) \dots \ell_{\sigma(k)}(v_k)$$

= $(\ell_{\sigma(1)} \otimes \dots \otimes \ell_{\sigma(k)})(v_1, \dots, v_k).$ (4.50)

To summarize,

$$\begin{cases} T = \ell_1 \otimes \cdots \otimes \ell_k \\ T^{\sigma} = \ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}. \end{cases}$$
(4.51)

Proposition 4.17. The mapping $T \in \mathcal{L}^k \to T^{\sigma} \in \mathcal{L}^k$ is linear.

We leave the proof of this as an exercise.

Definition 4.18. A tensor $T \in \mathcal{L}^k(V)$ is alternating if $T^{\sigma} = (-1)^{\sigma}T$ for all $\sigma \in S_k$.

Definition 4.19. We define

$$\mathcal{A}^k(V) =$$
 the set of all alternating *k*-tensors. (4.52)

By our previous claim, \mathcal{A}^k is a vector space.

The alternating operator Alt can be used to create alternating tensors.

Definition 4.20. Given a k-tensor $T \in \mathcal{L}^k(V)$, we define the alternating operator Alt : $\mathcal{L}^k(V) \to \mathcal{A}^k(V)$ by

Alt
$$(T) = \sum_{\tau \in S_k} (-10)^{\tau} T^{\tau}.$$
 (4.53)

Claim. The alternating operator has the following properties:

- 1. Alt $(T) \in \mathcal{A}^k(V)$,
- 2. If $T \in \mathcal{A}^k(V)$, then Alt (T) = k!T,
- 3. Alt $(T^{\sigma}) = (-1)^{\sigma} \operatorname{Alt} (T)$,
- 4. The map Alt : $\mathcal{L}^k(V) \to \mathcal{A}^k(V)$ is linear.

 $Proof. \qquad 1.$

Alt
$$(T) = \sum_{\tau} (-1)^{\tau} T^{\tau},$$
 (4.54)

 \mathbf{SO}

$$\operatorname{Alt} (T)^{\sigma} = \sum_{\tau} (-1)^{\tau} (T^{\tau})^{\sigma}$$
$$= \sum_{\tau} (-1)^{\tau} T^{\sigma\tau}$$
$$= (-1)^{\sigma} \sum_{\sigma\tau} (-1)^{\sigma\tau} T^{\sigma\tau}$$
$$= (-1)^{\sigma} \operatorname{Alt} (T).$$
$$(4.55)$$

2.

Alt
$$(T) = \sum_{\tau} (-1)^{\tau} T^{\tau},$$
 (4.56)

but $T^{\tau} = (-1)^{\tau}T$, since $T \in \mathcal{A}^k(V)$. So

Alt
$$(T) = \sum_{\tau} (-1)^{\tau} (-1)^{\tau} T$$

= $k!T.$ (4.57)

3.

$$\operatorname{Alt} (T^{\sigma}) = \sum_{\tau} (-1)^{\tau} (T^{\sigma})^{\tau}$$
$$= \sum_{\tau} (-1)^{\tau} T^{\tau \sigma}$$
$$= (-1)^{\sigma} \sum_{\tau \sigma} (-1)^{\tau \sigma} T^{\tau \sigma}$$
$$= (-1)^{\sigma} \operatorname{Alt} (T).$$
$$(4.58)$$

4. We leave the proof as an exercise.

Now we ask ourselves: what is the dimension of $\mathcal{A}^k(V)$? To answer this, it is best to write a basis.

Earlier we found a basis for \mathcal{L}^k . We defined e_1, \ldots, e_n to be a basis of V and e_1^*, \ldots, e_n^* to be a basis of V^* . We then considered multi-indices $I = (i_1, \ldots, i_k), 1 \leq i_r \leq n$ and defined $\{e_I^* = e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*, I \text{ a multi-index}\}$ to be a basis of \mathcal{L}^k . For any multi-index $J = (j_1, \ldots, j_k)$, we had

$$e_I^*(e_{j_1}, \dots, e_{j_k}) = \begin{cases} 1 & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$
(4.59)

Definition 4.21. A multi-index $I = (i_1, \ldots, i_k)$ is repeating if $i_r = i_s$ for some r < s.

Definition 4.22. The multi-index I is strictly increasing if $1 \le i_1 < \ldots < i_k \le n$.

Notation. Given $\sigma \in S_k$ and $I = (i_1, \ldots, i_k)$, we denote $I^{\sigma} = (i_{\sigma(1)}, \ldots, i_{\sigma(k)})$.

Remark. If J is a non-repeating multi-index, then there exists a permutation σ such that $J = I^{\sigma}$, where I is strictly increasing.

$$e_J^* = e_{I^{\sigma}}^* = e_{\sigma(i_1)}^* \otimes \dots \otimes e_{\sigma(i_k)}^* = (e_I^*)^{\sigma}.$$
 (4.60)

Define $\psi_I = \operatorname{Alt}(e_I^*)$.

Theorem 4.23. 1. $\psi_{I^{\sigma}} = (-1)^{\sigma} \psi_{I}$,

- 2. If I is repeating, then $\psi_I = 0$,
- 3. If I, J are strictly increasing, then

$$\psi_{I}(e_{j_{1}},\ldots,e_{j_{k}}) = \begin{cases} 1 & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$
(4.61)

Proof. 1.

$$\psi_{I^{\sigma}} = \operatorname{Alt} e_{I^{\sigma}}^{*}$$

$$= \operatorname{Alt} ((e_{I}^{*})^{\sigma})$$

$$= (-1)^{\sigma} \operatorname{Alt} e_{I}^{*}$$

$$= (-1)^{\sigma} \psi_{I}.$$
(4.62)

2. Suppose that I is repeating. Then $I = I^{\tau}$ for some transposition τ . So $\psi_I = (-1)^{\tau} \psi_I$. But (as you proved in the homework) $(-1)^{\tau} = -1$, so $\psi_I = 0$.

3.

$$\psi_{I} = \text{Alt} (e_{I}^{*}) = \sum_{\tau} (-1)^{\tau} e_{I^{\tau}}^{*},$$
(4.63)

 \mathbf{SO}

$$\psi_{I}(e_{j_{1}},\ldots,e_{j_{k}}) = \sum_{\tau} (-1)^{\tau} \underbrace{e_{I^{\tau}}^{*}(e_{j_{1}},\ldots,e_{j_{k}})}_{\left\{ \begin{array}{l} 1 & \text{if } I^{\tau} = J, \\ 0 & \text{if } I^{\tau} \neq J. \end{array} \right.}$$
(4.64)

But $I^{\tau} = J$ only if τ is the identity permutation (because both I^{τ} and J are strictly increasing). The only non-zero term in the sum is when τ is the identity permutation, so

$$\psi_I(e_{j_1}, \dots, e_{j_k}) = \begin{cases} 1 & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$
(4.65)

Corollary 5. The alternating k-tensors ψ_I , where I is strictly increasing, are a basis of $\mathcal{A}^k(V)$.

Proof. Take $T \in \mathcal{A}^k(V)$. The tensor T can be expanded as $T = \sum c_I e_I^*$. So

$$\operatorname{Alt}(T) = k! \sum c_I \operatorname{Alt}(e_I^*)$$

$$= k! \sum c_I \psi_I.$$
(4.66)

If I is repeating, then $\psi_I = 0$. If I is non-repeating, then $I = J^{\sigma}$, where J is strictly increasing. Then $\psi_I = (-1)^{\sigma} \psi_J$.

So, we can replace all multi-indices in the sum by strictly increasing multi-indices,

$$T = \sum a_I \psi_I$$
, *I*'s strictly increasing. (4.67)

Therefore, the ψ_I 's span $\mathcal{A}^k(V)$. Moreover, the ψ_I 's are a basis if and only if the a_i 's are unique. We show that the a_I 's are unique.

Let J be any strictly increasing multi-index. Then

$$T(e_{j_1}, \dots, e_{j_k}) = \sum_{i=1}^{n} a_I \psi(e_{j_1}, \dots, e_{j_k})$$

= a_J , (4.68)

by property (3) of the previous theorem. Therefore, the ψ_I 's are a basis of $\mathcal{A}^k(V)$. \Box