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Lecture 26

We continue our study of forms with compact support. Let us begin with a review. 
Let U ∈ Rn be open, and let 

ω = fI(x1, . . . , xn)dxI , (5.48) 
I 

where I = (i1, . . . , ik) is strictly increasing and dxI = dxi1 ∧ · · · ∧ dxik . Then 

ω is compactly supported ⇐⇒ every fI is compactly supported. (5.49) 

By definition, 
supp fI = {x ∈ U : fI(x) = 0}. (5.50) 

We assume that the fI ’s are C2 maps. 

Notation. 

Ωc
k(U) = space of compactly supported differentiable kforms on U . (5.51) 

Now, let ω ∈ Ωn
c (U) defined by 

ω = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn, (5.52) 

where f ∈ Ω0 
c (U). Then 

ω = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn. (5.53) 
Rn Rn 

Last time we proved the Poincare Lemma for open rectangles R in Rn . We assumed 
that ω ∈ Ωc

n(Int R). That is, we assumed that ω ∈ Ωc
n(Rn) such that supp ω ⊂ Int R. 

We showed that for such ω the following two conditions are equivalent: 

1. Rn ω = 0, 

2. There exists a µ ∈ Ωn−1(Int R) such that dµ = 0.c 

Definition 5.9. Whenever ω ∈ Ωk(U) and ω = dµ for some µ ∈ Ωk−1(U), we say 
that ω is exact. 

Definition 5.10. Whenever ω ∈ Ωk(U) such that dω = 0, we say that ω is closed. 

Observe that 
ω ∈ Ωn

c (U) = dω = 0. (5.54) ⇒ 

Now we prove the Poincare Lemma for open connected subsets of Rn . 
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Poincare Lemma. Let U be a connected open subset of Rn, and let ω ∈ Ωn
c (U). The 

following conditions are equivalent: 

1. ω = 0,
U 

2. ω = dµ, for some µ ∈ Ωn−1(U).c 

Proof. We prove this more general case by reducing the proof to the case where U is 
a rectangle, which we proved in the previous lecture. 

First we prove that (2) implies (1). We can choose a family of rectangles {Ri, i ∈
N} such that 
 

U = Int Ri (5.55) 
i∈N 

Since the support of µ is compact, the set supp µ is covered by finitely many of the 
rectangles. 

We take a partition of unity {φi, i ∈ N} subordinate to {Ri}, so that 

N

µ = ����)supported on Int Ri (5.56) φiµ
i=1 

Then � � 
dµ = d(φiµ). (5.57) 

Rn 
i 

Each term on the r.h.s is zero by the Poincare Lemma we proved last lecture. 
We now prove the other direction, that (1) implies (2). It is equivalent to show 

that if ω1, ω2 ∈ Ωn
c (U) such that 

ω1 = ω2, (5.58) 

then ω1 ∼ ω2, meaning that there exists a form µ ∈ Ωn−1(U) such that ω1 = ω2 + dµ.c 

Choose a partition of unity {φi} as before. Then 

M

ω = φiω (5.59) 
i=1 supported on Int Ri 

Let � 
ω = c ∈ R, (5.60) 

and � 
φiω = ci. (5.61) 
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Choose a form ω0 such that 

ω0 = 1 (5.62) 

and such that supp ω0 ⊆ Q0 = Rj for some j. Then � � 
φiω���� = ciω0���� (5.63) 

supported in Ri supported in Q0 

We want to show that there exists µi ∈ Ωn−1(U) such that φiω = ciωi + dµi.c 

Now we use the fact that U is connected. We use the following lemma. 

Lemma 5.11. Let U be connected. Given rectangles Ri such that supp φiω ⊂ Int Ri, 
and given a fixed rectangle Q0 and any point x ∈ U , there exists a finite sequence 
of rectangles R0, . . . , RN with the following properties: Q0 = R0, x ∈ Int RN , and 
(Int Ri) ∩ (Int Ri+1) is nonempty. 

We omit the proof of this lemma. 
Now, define ωi = φiω, so 

ωi = ciω0. (5.64) 

Note that 

supp (ciω0) ⊆ Int (Q0) (5.65) 

supp (ωi) ⊆ Int (Ri). (5.66) 

Choose forms νi such that supp νi ⊆ Int Ri ∩ Int Ri+1 and such that 

νi = 1. (5.67) 

This implies that 
supp (νi − νi+1) ⊆ Int Ri+1 (5.68) 

By definition, 

(νi − νi+1) = 0. (5.69) 

By the Poincare Lemma we proved last time, νi ∼ νi+1, so there exists µi ∈ Ωn−1(U)c 

such that νi = νi+1 + dµi. 
So, 

ciω0 ∼ ciν0 ∼ ciν1 ∼ . . . ∼ ciνN ∼ φiω. (5.70) 
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5.2 Proper Maps and Degree 

We introduce a class of functions that remain compactly supported under the pullback 
operation. 

Definition 5.12. Let U ⊆ Rn and V ⊆ Rk, and let f : U → V be a continuous map. 
The map f is proper if for all compact subsets K ⊆ V , the set f−1(K) is compact. 

Let U ⊆ Rn and V ⊆ Rk, and let f : U → V be a continuous map. Also let 
ω ∈ Ωk(V ). The map 

f ∗ : Ωk(V ) → Ωk(U) (5.71) 

is defined such that 

ω = g(y1, . . . , yn)dyi1 ∧ . . . ∧ dyik 
→ f ∗ω = g(f(x))d fik 

. (5.72) fi1 ∧ · · · d

So, 
f−1(supp ω) ⊇ supp (f∗ω). (5.73) 

If f is proper and ω ∈ Ωn
c (V ), then supp (f∗ω) is compact, in which case the map f ∗ 

is actually of the form 
f ∗ : Ωk

c (V ) → Ωk
c (U). (5.74) 

That is, ω ∈ Ωc
n(V ) → f ∗ω ∈ Ωn

c (U). So, it makes sense to take the integral 

f ∗ω = (deg f) ω. (5.75) 
U V 

Theorem 5.13. Let U, V be connected open subsets of Rn, and let f : U V be a → 
C∞ map. For all ω ∈ Ωn

c (V ), 

f ∗ω = (deg f) ω. (5.76) 
U V 

Proof. Take ω0 ∈ Ωn
c (V ) such that 

ω0 = 1. (5.77) 

Define � 
deg f ≡ f ∗ω0, (5.78) 

and suppose that 

ω = c. (5.79) 

Then � � 
ω = cω0. (5.80) 

4




� � 

� 

�� � 

� 

� 

� 

� 

By the Poincare Lemma, ω ∼ cω0. That is, there exists µ ∈ Ωn−1(V ) such that c 

ω = cω0 + dµ. Then 

f ∗ω = f ∗(cω0) + f ∗(dµ) 
(5.81) 

= f ∗(cω0) + d(f∗µ), 

which shows that f ∗ω ∼ f ∗(cω0). Putting this altogether, 

f ∗ω = f ∗(cω0) 

= c f ∗ω0 
(5.82) 

= c deg f 

= ω deg f. 

We had ω = g(y1, . . . , yn)dy1 ∧ · · · ∧ dyn, so 

f ∗ω = g(f(x))df1 ∧ · · · ∧� 
dfm 

∂fi (5.83) 
= g(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn, 

where we used the fact that 
n� ∂fi

dfi = dxj (5.84) 
∂xjj=1 

Restated in coordinates, the above theorem says that 

g(f(x)) det(Df)dx1 ∧ · · · ∧ dxn 
U 

= (deg f) g(y1, . . . , yn)dy1 ∧ · · · ∧ dyn. (5.85) 
V 

Claim. Given proper maps f : V → W and g : U V , where U, V,W are connected →
open subsets of Rn , 

deg(fg) = (deg g)(deg f). (5.86) 

Proof. Note that (f ◦ g)∗ = g∗ f ∗, so ◦ � � 
deg(f ◦ g) ω = (f ◦ g)∗ω 

W �U 
= g∗(f∗ω) 

V � (5.87) 

= (deg g) f ∗ω 
V 

= (deg g)(deg f) ω. 
W 
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