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Solutions to Problem set 9 

P9.1: Periodic functions 
Let S be the circle of radius 1 in the complex plane, centered at the origin, 

S = {z; |z| = 1}. 
(1) Show that there is a 1-1 correspondence 

(21.40) C0(S) = {u : S −→ C, continuous} −→ 

{u : R −→ C; continuous and satisfying u(x + 2π) = u(x) ∀ x ∈ R}. 

Solution: The map E : R � θ �−→ e2πiθ ∈ S is continuous, surjective and 
2π-periodic and the inverse image of any point of the circle is precisly of 
the form θ + 2πZ for some θ ∈ R. Thus composition defines a map 

(21.41) E∗ : C0(S) −→ C0(R), E∗f = f ◦ E. 

This map is a linear bijection. 
(2) Show that there is a 1-1 correspondence 

(21.42) L2(0, 2π) ←→ {u ∈ L1 (R); u� 
(0,2π) 

∈ L2(0, 2π)loc

and u(x + 2π) = u(x) ∀ x ∈ R}/NP 

where NP is the space of null functions on R satisfying u(x + 2π) = u(x) 
for all x ∈ R. 

Solution: Our original definition of L2(0, 2π) is as functions on R which 
are square-integrable and vanish outside (0, 2π). Given such a function u 
we can define an element of the right side of (21.42) by assigning a value 
at 0 and then extending by periodicity 

(21.43) ũ(x) = u(x − 2nπ), n ∈ Z 

where for each x ∈ R there is a unique integer n so that x − 2nπ ∈ [0, 2π). 
Null functions are mapped to null functions his way and changing the choice 
of value at 0 changes ũ by a null function. This gives a map as in (21.42) 
and restriction to (0, 2π) is a 2-sided invese. 

(3) If we denote by L2(S) the space on the left in (21.42) show that there is a 
dense inclusion 

(21.44) C0(S) −→ L2(S). 

Solution: Combining the first map and the inverse of the second gives an 
inclusion. We know that continuous functions vanishing near the end-points 
of (0, 2π) are dense in L2(0, 2π) so density follows. 

So, the idea is that we can freely think of functions on S as 2π-periodic functions 
on R and conversely. 

P9.2: Schrödinger’s operator 
Since that is what it is, or at least it is an example thereof: 

d2u(x)
(21.45) − 

dx2 
+ V (x)u(x) = f(x), x ∈ R, 

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t try 
to answer this until the end! 
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Solution: The reason we take V = 1, or at least some other positive 
constant is that there is 1-d space of periodic solutions to d2u/dx2 = 0, 
namely the constants. 

(2) Recall how to solve the differential equation 

d2u(x)
(21.46) − 

dx2 
+ u(x) = f(x), x ∈ R, 

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show 
that there is a unique 2π-periodic and twice continuously differentiable 
function, u, on R satisfying (21.46) and that this solution can be written 
in the form 

(21.47) u(x) = (Sf)(x) = A(x, y)f(y) 
0,2π 

where A(x, y) ∈ C0(R2) satisfies A(x + 2π, y + 2π) = A(x, y) for all (x, y) ∈
R. 

Extended hint: In case you managed to avoid a course on differential 
equations! First try to find a solution, igonoring the periodicity issue. To 
do so one can (for example, there are other ways) factorize the differential 
operator involved, checking that 

(21.48) 
d2u(x)

+ u(x) = −( 
dv 

+ v) if v = 
du − 

dx2 dx dx 
− u 

since the cross terms cancel. Then recall the idea of integrating factors to 
see that 

du dφ 
dx 
− u = e x 

dx
, φ = e−x u, 

(21.49) 
dv dψ 

+ v = e−x , ψ = e x v. 
dx dx 

Now, solve the problem by integrating twice from the origin (say) and hence 
get a solution to the differential equation (21.46). Write this out explicitly 
as a double integral, and then change the order of integration to write the 
solution as 

(21.50) u�(x) = A�(x, y)f(y)dy 
0,2π 

where A� is continuous on R× [0, 2π]. Compute the difference u�(2π)−u�(0) 
and du� (2π) − du� (0) as integrals involving f. Now, add to u� as solution dx dx 
to the homogeneous equation, for f = 0, namely c1ex + c2e−x , so that the 

du dunew solution to (21.46) satisfies u(2π) = u(0) and dx (2π) = dx (0). Now, 
check that u is given by an integral of the form (21.47) with A as stated. 

duSolution: Integrating once we find that if v = dx − u then 

x x 

(21.51) v(x) = −e−x e sf(s)ds, u�(x) = e x e−t v(t)dt 
0 0 
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gives a solution of the equation − d
2 u� + u�(x) = f(x) so combinging these dx2 

two and changing the order of integration 

u�(x) = 
x 

Ã(x, y)f(y)dy, Ã(x, y) = 
1
2 

� 
ey−x − e x−y 

� 
(21.52) � 

0 � 
1 

u�(x) = A�(x, y)f(y)dy, A�(x, y) = 2 (e
y−x − ex−y) x ≥ y 

(0,2π) 0 x ≤ y. 

Here A� is continuous since Ã vanishes at x = y where there might other
wise be a discontinuity. This is the only solution which vanishes with its 
derivative at 0. If it is to extend to be periodic we need to add a solution 
of the homogeneous equation and arrange that 

du du
(21.53) u = u� + u��, u�� = ce x + de−x , u(0) = u(2π), (0) = (2π). 

dx dx 

So, computing away we see that 
(21.54) 

u�(2π) = 
� 2π 1 � 

ey−2π 2π−y 
� 
f(y), 

du� 
(2π) = − 

� 2π 1 � 
ey−2π + e 2π−y 

� 
f(y).

2 
− e 

dx 20 0 

Thus there is a unique solution to (21.53) which must satify 
(21.55) 

c(e 2π − 1) + d(e−2π − 1) = −u�(2π), c(e 2π − 1) − d(e−2π − 1) = − 
du� 

(2π)
dx 

1 
� 2π � � 1 

� 2π � � 
(e 2π − 1)c =

2 0 
e 2π−y f(y), (e−2π − 1)d = −

2 0 
ey−2π f(y). 

Putting this together we get the solution in the desired form: 
(21.56) � 

1 e2π−y+x 1 e−2π+y−x 

u(x) = 
(0.2π) 

A(x, y)f(y), A(x, y) = A�(x, y) + 
2 e2π − 1 

− 
2 e−2π − 1

= ⇒ 

A(x, y) = 
cosh(|x − y| − π) 

. 
eπ − e−π 

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is 
real.


Solution: Clear from (21.56).

(4) Conclude that the operator S extends by continuity to a bounded operator 

on L2(S).

Solution. We know that �S� ≤ 

√
2π sup |A|.


(5) Check, probably indirectly rather than directly, that 

(21.57) S(e ikx) = (k2 + 1)−1 e ikx , k ∈ Z. 

Solution. We know that Sf is the unique solution with periodic bound
ary conditions and eikx satisfies the boundary conditions and the equation 
with f = (k2 + 1)eikx . 

(6) Conclude, either from the previous result or otherwise that S is a compact 
self-adjoint operator on L2(S). 

Soluion: Self-adjointness and compactness follows from (21.57) since we 
know that the eikx/

√
2π form an orthonormal basis, so the eigenvalues of S 
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tend to 0. (Myabe better to say it is approximable by finite rank operators 
by truncating the sum). 

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint: 
Proceed directly by differentiating the integral. 

Solution: Clearly Sf is continuous. Going back to the formula in terms 
of u� + u�� we see that both terms are twice continuously differentiable. 

(8) From (21.57) conclude that S = F 2 where F is also a compact self-adjoint 
operator on L2(S) with eigenvalues (k2 + 1)−

1 
2 . 

Solution: Define F (eikx) = (k2 + 1)−
1
2 eikx . Same argument as above 

applies to show this is compact and self-adjoint. 
(9) Show that F : L2(S) −→ C0(S). 

Solution. The series for Sf 

1 � 
(2k2 + 1)−

1
2 (f, eikx)e ikx (21.58) Sf(x) = 

2π 
k 

converges absolutely and uniformly, using Cauchy’s inequality – for instance 
it is Cauchy in the supremum norm: 

1 
2 (f, eikx)e ikx| ≤ ��f�L2(21.59) (2k2 + 1)−

|k|>p 

for p large since the sum of the squares of the eigenvalues is finite. 
(10) Now, going back to the real equation (21.45), we assume that V is contin

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable 
2π-periodic function satisfying (21.45) for a given f ∈ C0(S) then 

(21.60) u + S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f 

and hence conclude that 

(21.61) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff 

where V − 1 is the operator defined by multiplication by V − 1. 
Solution: If u satisfies (21.45) then 

d2u(x)
(21.62) − 

dx2 
+ u(x) = −(V (x) − 1)u(x) + f(x) 

so by the uniquenss of the solution with periodic boundary conditions, 
u = −S(V − 1)u + Sf so u = F (−F (V − 1)u + Ff). Thus indeed u = Fv 
with v = −F (V − 1)u + Ff which means that v satisfies 

(21.63) v + F (V − 1)Fv = Ff. 

(11) Show the converse, that if v ∈ L2(S) satisfies 

(21.64) v + (F (V − 1)F )v = Ff, f ∈ C0(S) 

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies 
(21.45). 

Solution. If v ∈ L2(0, 2π) satisfies (21.64) then u = Fv ∈ C0(S) satisfies 
u+F 2(V −1)u = F 2f and since F 2 = S maps C0(S) into twice continuously 
differentiable functions it follows that u satisfies (21.45). 
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(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and 
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all 
λ ∈ C \ {0}, the equation 

(21.65) λv + (F (V − 1)F )v = g, g ∈ L2(S) 

has a unique solution for every g ∈ L2(S) if and only if λ =� λj for any j. 
Solution: We know that F (V − 1)F is self-adjoint and compact so 

L2(0.2π) has an orthonormal basis of eigenfunctions of −F (V − 1)F with 
eigenvalues λj . This sequence tends to zero and (21.65), for given λ ∈
C \ {0}, if and only if has a solution if and only if it is an isomorphism, 
meaning λ =� λj is not an eigenvalue of −F (V − 1)F. 

(13) Show that for the λj the solutions of 

(21.66) λj v + (F (V − 1)F )v = 0, v ∈ L2(S), 

are all continuous 2π-periodic functions on R. 
Solution: If v satisfies (21.66) with λj = 0 then � v = −F (V − 1)F/λj ∈ 

C0(S). 
(14) Show that the corresponding functions u = Fv where v satisfies (21.66) are 

all twice continuously differentiable, 2π-periodic functions on R satisfying 

d2u
(21.67) − 

dx2 
+ (1 − sj + sj V (x))u(x) = 0, sj = 1/λj . 

Solution: Then u = Fv satisfies u = −S(V − 1)u/λj so is twice contin
uously differentiable and satisfies (21.67). 

(15) Conversely, show that if u is a twice continuously differentiable, 2π-periodic 
function satisfying 

d2u
(21.68) − 

dx2 
+ (1 − s + sV (x))u(x) = 0, s ∈ C, 

and u is not identically 0 then s = sj for some j. 
Solution: From the uniquess of periodic solutions u = −S(V − 1)u/λj 

as before. 
(16) Finally, conclude that Fredholm’s alternative holds for the equation (21.45) 

Theorem 16. For a given real-valued, continuous 2π-periodic function V 
on R, either (21.45) has a unique twice continuously differentiable, 2π
periodic, solution for each f which is continuous and 2π-periodic or else 
there exists a finite, but positive, dimensional space of twice continuously 
differentiable 2π-periodic solutions to the homogeneous equation 

(21.69) 
d2w(x)

+ V (x)w(x) = 0, x ∈ R,− 
dx2 

and (21.45) has a solution if and only if 
(0,2π) fw = 0 for every 2π-periodic 

solution, w, to (21.69). 

Solution: This corresponds to the special case λj = 1 above. If λj is not an 
eigenvalue of −F (V − 1)F then 

(21.70) v + F (V − 1)Fv = Ff 

has a unque solution for all f, otherwise the necessary and sufficient condition is 
that (v, Ff) = 0 for all v� satisfying v� + F (V − 1)Fv� = 0. Correspondingly either 



(21.45) has a unique solution for all f or the necessary and sufficient condition is 
that (Fv�, f) = 0 for all w = Fv� (remember that F is injetive) satisfying (21.69). 

Not to be handed in, just for the enthusiastic 
Check that we really can understand all the 2π periodic eigenfunctions of the 

Schrödinger operator using the discussion above. First of all, there was nothing 
sacred about the addition of 1 to −d2/dx2 , we could add any positive number 
and get a similar result – the problem with 0 is that the constants satisfy the 
homogeneous equation d2u/dx2 = 0. What we have shown is that the operator 

d2u
(21.71) u �−→ Qu = − 

dx2 
u + V u 

applied to twice continuously differentiable functions has at least a left inverse 
unless there is a non-trivial solution of 

d2u
(21.72) − 

dx2 
u + V u = 0. 

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint 
operator. Show – and there is still a bit of work to do – that (twice continuously 
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the 
non-trivial solutions of Ru = τ−1u. 

What to do in case (21.72) does have a non-trivial solution? Show that the space 
of these is finite dimensional and conclude that essentially the same result holds by 
working on the orthocomplement in L2(S). 




