MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS TO PROBLEM SET 5 FOR 18.102, SPRING 2009
 WAS DUE 11AM TUESDAY 17 MAR.

RICHARD MELROSE

You should be thinking about using Lebesgue's dominated convergence at several points below.

Problem 5.1

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be an element of $\mathcal{L}^{1}(\mathbb{R})$. Define

$$
f_{L}(x)= \begin{cases}f(x) & x \in[-L, L] \tag{5.1}\\ 0 & \text { otherwise }\end{cases}
$$

Show that $f_{L} \in \mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|f_{L}-f\right| \rightarrow 0$ as $L \rightarrow \infty$.
Solution. If χ_{L} is the characteristic function of $[-N, N]$ then $f_{L}=f \chi_{L}$. If f_{n} is an absolutely summable series of step functions converging a.e. to f then $f_{n} \chi_{L}$ is absolutely summable, since $\int\left|f_{n} \chi_{L}\right| \leq \int\left|f_{n}\right|$ and converges a.e. to f_{L}, so $f_{L} \int \mathcal{L}^{1}(\mathbb{R})$. Certainly $\left|f_{L}(x)-f(x)\right| \rightarrow 0$ for each x as $L \rightarrow \infty$ and $\left|f_{L}(x)-f(x)\right| \leq$ $\left|f_{l}(x)\right|+|f(x)| \leq 2|f(x)|$ so by Lebesgue's dominated convergence, $\int\left|f-f_{L}\right| \rightarrow 0$.

Problem 5.2

Consider a real-valued function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is locally integrable in the sense that

$$
g_{L}(x)= \begin{cases}f(x) & x \in[-L, L] \tag{5.2}\\ 0 & x \in \mathbb{R} \backslash[-L, L]\end{cases}
$$

is Lebesgue integrable of each $L \in \mathbb{N}$.
(1) Show that for each fixed L the function

$$
g_{L}^{(N)}(x)= \begin{cases}g_{L}(x) & \text { if } g_{L}(x) \in[-N, N] \tag{5.3}\\ N & \text { if } g_{L}(x)>N \\ -N & \text { if } g_{L}(x)<-N\end{cases}
$$

is Lebesgue integrable.
(2) Show that $\int\left|g_{L}^{(N)}-g_{L}\right| \rightarrow 0$ as $N \rightarrow \infty$.
(3) Show that there is a sequence, h_{n}, of step functions such that

$$
\begin{equation*}
h_{n}(x) \rightarrow f(x) \text { a.e. in } \mathbb{R} . \tag{5.4}
\end{equation*}
$$

(4) Defining

$$
h_{n, L}^{(N)}= \begin{cases}0 & x \notin[-L, L] \tag{5.5}\\ h_{n}(x) & \text { if } h_{n}(x) \in[-N, N], x \in[-L, L] \\ N & \text { if } h_{n}(x)>N, x \in[-L, L] \\ -N & \text { if } h_{n}(x)<-N, x \in[-L, L]\end{cases}
$$

Show that $\int\left|h_{n, L}^{(N)}-g_{L}^{(N)}\right| \rightarrow 0$ as $n \rightarrow \infty$.
Solution:
(1) By definition $g_{L}^{(N)}=\max \left(-N \chi_{L}, \min \left(N \chi_{L}, g_{L}\right)\right)$ where χ_{L} is the characteristic funciton of $-[L, L]$, thus it is in $\mathcal{L}^{1}(\mathbb{R})$.
(2) Clearly $g_{L}^{(N)}(x) \rightarrow g_{L}(x)$ for every x and $\left|g_{L}^{(N)}(x)\right| \leq\left|g_{L}(x)\right|$ so by Dominated Convergence, $g_{L}^{(N)} \rightarrow g_{L}$ in L^{1}, i.e. $\int\left|g_{L}^{(N)}-g_{L}\right| \rightarrow 0$ as $N \rightarrow \infty$ since the sequence converges to 0 pointwise and is bounded by $2|g(x)|$.
(3) Let $S_{L, n}$ be a sequence of step functions converging a.e. to g_{L} - for example the sequence of partial sums of an absolutely summable series of step functions converging to g_{L} which exists by the assumed integrability. Then replacing $S_{L, n}$ by $S_{L, n} \chi_{L}$ we can assume that the elements all vanish outside $[-N, N]$ but still have convergence a.e. to g_{L}. Now take the sequence

$$
h_{n}(x)= \begin{cases}S_{k, n-k} & \text { on }[k,-k] \backslash[(k-1),-(k-1)], 1 \leq k \leq n \tag{5.6}\\ 0 & \text { on } \mathbb{R} \backslash[-n, n]\end{cases}
$$

This is certainly a sequence of step functions - since it is a finite sum of step functions for each $n-$ and on $[-L, L] \backslash[-(L-1),(L-1)]$ for large integral L is just $S_{L, n-L} \rightarrow g_{L}$. Thus $h_{n}(x) \rightarrow f(x)$ outside a countable union of sets of measure zero, so also almost everywhere.
(4) This is repetition of the first problem, $h_{n, L}^{(N)}(x) \rightarrow g_{L}^{(N)}$ almost everywhere and $\left|h_{n, L}^{(N)}\right| \leq N \chi_{L}$ so $g_{L}^{(N)} \in \mathcal{L}^{1}(\mathbb{R})$ and $\int\left|h_{n, L}^{(N)}-g_{L}^{(N)}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Problem 5.3

Show that $\mathcal{L}^{2}(\mathbb{R})$ is a Hilbert space - since it is rather central to the course I wanted you to go through the details carefully!

First working with real functions, define $\mathcal{L}^{2}(\mathbb{R})$ as the set of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ which are locally integrable and such that $|f|^{2}$ is integrable.
(1) For such f choose h_{n} and define $g_{L}, g_{L}^{(N)}$ and $h_{n}^{(N)}$ by (5.2), (5.3) and (5.5).
(2) Show using the sequence $h_{n, L}^{(N)}$ for fixed N and L that $g_{L}^{(N)}$ and $\left(g_{L}^{(N)}\right)^{2}$ are in $\mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|\left(h_{n, L}^{(N)}\right)^{2}-\left(g_{L}^{(N)}\right)^{2}\right| \rightarrow 0$ as $n \rightarrow \infty$.
(3) Show that $\left(g_{L}\right)^{2} \in \mathcal{L}^{1}(\mathbb{R})$ and that $\int\left|\left(g_{L}^{(N)}\right)^{2}-\left(g_{L}\right)^{2}\right| \rightarrow 0$ as $N \rightarrow \infty$.
(4) Show that $\int\left|\left(g_{L}\right)^{2}-f^{2}\right| \rightarrow 0$ as $L \rightarrow \infty$.
(5) Show that $f, g \in \mathcal{L}^{2}(\mathbb{R})$ then $f g \in \mathcal{L}^{1}(\mathbb{R})$ and that

$$
\begin{equation*}
\left|\int f g\right| \leq \int|f g| \leq\|f\|_{L^{2}}\|g\|_{L^{2}},\|f\|_{L^{2}}^{2}=\int|f|^{2} \tag{5.7}
\end{equation*}
$$

(6) Use these constructions to show that $\mathcal{L}^{2}(\mathbb{R})$ is a linear space.
(7) Conclude that the quotient space $L^{2}(\mathbb{R})=\mathcal{L}^{2}(\mathbb{R}) / \mathcal{N}$, where \mathcal{N} is the space of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.

Solution:
(1) Done. I think it should have been $h_{n, L}^{(N)}$.
(2) We already checked that $g_{L}^{(N)} \in \mathcal{L}^{1}(\mathbb{R})$ and the same argument applies to $\left(g_{L}^{(N)}\right)$, namely $\left(h_{n, L}^{(N)}\right)^{2} \rightarrow g_{L}^{(N)}$ almost everywhere and both are bounded by $N^{2} \chi_{L}$ so by dominated convergence

$$
\begin{gather*}
\left.\left.\left(h_{n, L}^{(N)}\right)^{2} \rightarrow g_{L}^{(N)}\right)^{2} \leq N^{2} \chi_{L} \text { a.e. } \Longrightarrow g_{L}^{(N)}\right)^{2} \in \mathcal{L}^{1}(\mathbb{R}) \text { and } \\
\left.\left.\mid h_{n, L}^{(N)}\right)^{2}-g_{L}^{(N)}\right)^{2} \mid \rightarrow 0 \text { a.e. }, \tag{5.8}\\
\left.\left.\left.\left.\mid h_{n, L}^{(N)}\right)^{2}-g_{L}^{(N)}\right)^{2}\left|\leq 2 N^{2} \chi_{L} \Longrightarrow \int\right| h_{n, L}^{(N)}\right)^{2}-g_{L}^{(N)}\right)^{2} \mid \rightarrow 0
\end{gather*}
$$

(3) Now, as $N \rightarrow \infty,\left(g_{L}^{(N)}\right)^{2} \rightarrow\left(g_{L}\right)^{2}$ a.e. and $\left(g_{L}^{(N)}\right)^{2} \rightarrow\left(g_{L}\right)^{2} \leq f^{2}$ so by dominated convergence, $\left(g_{L}\right)^{2} \in \mathcal{L}^{1}$ and $\int\left|\left(g_{L}^{(N)}\right)^{2}-\left(g_{L}\right)^{2}\right| \rightarrow 0$ as $N \rightarrow \infty$.
(4) The same argument of dominated convergence shows now that $g_{L}^{2} \rightarrow f^{2}$ and $\int\left|g_{L}^{2}-f^{2}\right| \rightarrow 0$ using the bound by $f^{2} \in \mathcal{L}^{1}(\mathbb{R})$.
(5) What this is all for is to show that $f g \in \mathcal{L}^{1}(\mathbb{R})$ if $f, F=g \in \mathcal{L}^{2}(\mathbb{R})$ (for easier notation). Approximate each of them by sequences of step functions as above, $h_{n, L}^{(N)}$ for f and $H_{n, L}^{(N)}$ for g. Then the product sequence is in $\mathcal{L}^{1}-$ being a sequence of step functions - and

$$
h_{n, L}^{(N)}(x) H_{n, L}^{(N)}(x) \rightarrow g_{L}^{(N)}(x) G_{L}^{(N)}(x)
$$

almost everywhere and with absolute value bounded by $N^{2} \chi_{L}$. Thus by dominated convergence $g_{L}^{(N)} G_{L}^{(N)} \in \mathcal{L}^{1}(\mathbb{R})$. Now, let $N \rightarrow \infty$; this sequence converges almost everywhere to $g_{L}(x) G_{L}(x)$ and we have the bound

$$
\begin{equation*}
\left|g_{L}^{(N)}(x) G_{L}^{(N)}(x)\right| \leq|f(x) F(x)| \frac{1}{2}\left(f^{2}+F^{2}\right) \tag{5.10}
\end{equation*}
$$

so as always by dominated convergence, the limit $g_{L} G_{L} \in \mathcal{L}^{1}$. Finally, letting $L \rightarrow \infty$ the same argument shows that $f F \in \mathcal{L}^{1}(\mathbb{R})$. Moreover, $|f F| \in \mathcal{L}^{1}(\mathbb{R})$ and

$$
\left|\int f F\right| \leq \int|f F| \leq\|f\|_{L^{2}}\|F\|_{L^{2}}
$$

where the last inequality follows from Cauchy's inequality - if you wish, first for the approximating sequences and then taking limits.
(6) So if $f, g \in \mathcal{L}^{2}(\mathbb{R})$ are real-value, $f+g$ is certainly locally integrable and

$$
\begin{equation*}
(f+g)^{2}=f^{2}+2 f g+g^{2} \in \mathcal{L}^{1}(\mathbb{R}) \tag{5.12}
\end{equation*}
$$

by the discussion above. For constants $f \in \mathcal{L}^{2}(\mathbb{R})$ implies $c f \in \mathcal{L}^{2}(\mathbb{R})$ is directly true.
(7) The argument is the same as for \mathcal{L}^{1} versus L^{1}. Namely $\int f^{2}=0$ implies that $f^{2}=0$ almost everywhere which is equivalent to $f=0$ a@ė. Then the norm is the same for all $f+h$ where h is a null function since $f h$ and h^{2} are null so $(f+h)^{2}=f^{2}+2 f h+h^{2}$. The same is true for the inner product so it follows that the quotient by null functions

$$
L^{2}(\mathbb{R})=\mathcal{L}^{2}(\mathbb{R}) / \mathcal{N}
$$

is a preHilbert space.
However, it remains to show completeness. Suppose $\left\{\left[f_{n}\right]\right\}$ is an absolutely summable series in $L^{2}(\mathbb{R})$ which means that $\sum_{n}\left\|f_{n}\right\|_{L^{2}}<\infty$. It
follows that the cut-off series $f_{n} \chi_{L}$ is absolutely summable in the L^{1} sense since

$$
\begin{equation*}
\int\left|f_{n} \chi_{L}\right| \leq L^{\frac{1}{2}}\left(\int f_{n}^{2}\right)^{\frac{1}{2}} \tag{5.14}
\end{equation*}
$$

by Cauchy's inequality. Thus if we set $F_{n}=\sum_{k-1}^{n} f_{k}$ then $F_{n}(x) \chi_{L}$ converges almost everywhere for each L so in fact

$$
\begin{equation*}
F_{n}(x) \rightarrow f(x) \text { converges almost everywhere. } \tag{5.15}
\end{equation*}
$$

We want to show that $f \in \mathcal{L}^{2}(\mathbb{R})$ where it follows already that f is locally integrable by the completeness of L^{1}. Now consider the series

$$
\begin{equation*}
g_{1}=F_{1}^{2}, g_{n}=F_{n}^{2}-F_{n-1}^{2} . \tag{5.16}
\end{equation*}
$$

The elements are in $\mathcal{L}^{1}(\mathbb{R})$ and by Cauchy's inequality for $n>1$,

$$
\begin{equation*}
\int\left|g_{n}\right|=\int\left|F_{n}^{2}-F_{n-1}\right|^{2} \leq\left\|F_{n}-F_{n-1}\right\|_{L^{2}}\left\|F_{n}+F_{n-1}\right\|_{L^{2}} \leq\left\|f_{n}\right\|_{L^{2}} 2 \sum_{k}\left\|f_{k}\right\|_{L^{2}} \tag{5.17}
\end{equation*}
$$

where the triangle inequality has been used. Thus in fact the series g_{n} is absolutely summable in \mathcal{L}^{1}

$$
\begin{equation*}
\sum_{n} \int\left|g_{n}\right| \leq 2\left(\sum_{n}\left\|f_{n}\right\|_{L^{2}}\right)^{2} \tag{5.18}
\end{equation*}
$$

So indeed the sequence of partial sums, the F_{n}^{2} converge to $f^{2} \in \mathcal{L}^{1}(\mathbb{R})$. Thus $f \in \mathcal{L}^{2}(\mathbb{R})$ and moroever

$$
\begin{equation*}
\int\left(F_{n}-f\right)^{2}=\int F_{n}^{2}+\int f^{2}-2 \int F_{n} f \rightarrow 0 \text { as } n \rightarrow \infty . \tag{5.19}
\end{equation*}
$$

Indeed the first term converges to $\int f^{2}$ and, by Cauchys inequality, the series of products $f_{n} f$ is absulutely summable in L^{1} with limit f^{2} so the third term converges to $-2 \int f^{2}$. Thus in fact $\left[F_{n}\right] \rightarrow[f]$ in $L^{2}(\mathbb{R})$ and we have proved completeness.
(8) For the complex case we need to check linearity, assuming f is locally integrable and $|f|^{2} \in \mathcal{L}^{1}(\mathbb{R})$. The real part of f is locally integrable and the approximation $F_{L}^{(N)}$ discussed above is square integrable with $\left(F_{L}^{(N)}\right)^{2} \leq$ $|f|^{2}$ so by dominated convergence, letting first $N \rightarrow \infty$ and then $L \rightarrow \infty$ the real part is in $\mathcal{L}^{2}(\mathbb{R})$. Now linearity and completeness follow from the real case.

Problem 5.4

Consider the sequence space

$$
\begin{equation*}
h^{2,1}=\left\{c: \mathbb{N} \ni j \longmapsto c_{j} \in \mathbb{C} ; \sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}<\infty\right\} \tag{5.20}
\end{equation*}
$$

(1) Show that

$$
\begin{equation*}
h^{2,1} \times h^{2,1} \ni(c, d) \longmapsto\langle c, d\rangle=\sum_{j}\left(1+j^{2}\right) c_{j} \overline{d_{j}} \tag{5.21}
\end{equation*}
$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.
(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^{2} by $\|\cdot\|_{2}$, show that

$$
\begin{equation*}
h^{2,1} \subset l^{2},\|c\|_{2} \leq\|c\|_{2,1} \forall c \in h^{2,1} . \tag{5.22}
\end{equation*}
$$

Solution:
(1) The inner product is well defined since the series defining it converges absolutely by Cauchy's inequality:

$$
\begin{gather*}
\langle c, d\rangle=\sum_{j}\left(1+j^{2}\right)^{\frac{1}{2}} c_{j} \overline{\left(1+j^{2}\right)^{\frac{1}{2}} d_{j}}, \\
\sum_{j} \left\lvert\,\left(1+j^{2}\right)^{\frac{1}{2}} c_{j} \overline{\left.\left(1+j^{2}\right)^{\frac{1}{2}} d_{j} \right\rvert\,} \leq\left(\sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{j}\left(1+j^{2}\right)\left|d_{j}\right|^{2}\right)^{\frac{1}{2}}\right. \tag{5.23}
\end{gather*}
$$

It is sesquilinear and positive definite since

$$
\begin{equation*}
\|c\|_{2,1}=\left(\sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}\right)^{\frac{1}{2}} \tag{5.24}
\end{equation*}
$$

only vanishes if all c_{j} vanish. Completeness follows as for l^{2} - if $c^{(n)}$ is a Cauchy sequence then each component $c_{j}^{(n)}$ converges, since $(1+j)^{\frac{1}{2}} c_{j}^{(n)}$ is Cauchy. The limits c_{j} define an element of $h^{2,1}$ since the sequence is bounded and

$$
\begin{equation*}
\sum_{j=1}^{N}\left(1+j^{2}\right)^{\frac{1}{2}}\left|c_{j}\right|^{2}=\lim _{n \rightarrow \infty} \sum_{j=1}^{N}\left(1+j^{2}\right)\left|c_{j}^{(n)}\right|^{2} \leq A \tag{5.25}
\end{equation*}
$$

where A is a bound on the norms. Then from the Cauchy condition $c^{(n)} \rightarrow c$ in $h^{2,1}$ by passing to the limit as $m \rightarrow \infty$ in $\left\|c^{(n)}-c^{(m)}\right\|_{2,1} \leq \epsilon$.
(2) Clearly $h^{2,2} \subset l^{2}$ since for any finite N

$$
\begin{equation*}
\sum_{j=1}^{N}\left|c_{j}\right|^{2} \sum_{j=1}^{N}(1+j)^{2}\left|c_{j}\right|^{2} \leq\|c\|_{2,1}^{2} \tag{5.26}
\end{equation*}
$$

and we may pass to the limit as $N \rightarrow \infty$ to see that

$$
\begin{equation*}
\|c\|_{l^{2}} \leq\|c\|_{2,1} \tag{5.27}
\end{equation*}
$$

Problem 5.5

In the separable case, prove Riesz Representation Theorem directly.
Choose an orthonormal basis $\left\{e_{i}\right\}$ of the separable Hilbert space H. Suppose $T: H \longrightarrow \mathbb{C}$ is a bounded linear functional. Define a sequence

$$
\begin{equation*}
w_{i}=\overline{T\left(e_{i}\right)}, i \in \mathbb{N} \tag{5.28}
\end{equation*}
$$

(1) Now, recall that $|T u| \leq C\|u\|_{H}$ for some constant C. Show that for every finite N,

$$
\begin{equation*}
\sum_{j=1}^{N}\left|w_{i}\right|^{2} \leq C^{2} \tag{5.29}
\end{equation*}
$$

(2) Conclude that $\left\{w_{i}\right\} \in l^{2}$ and that

$$
\begin{equation*}
w=\sum_{i} w_{i} e_{i} \in H \tag{5.30}
\end{equation*}
$$

(3) Show that

$$
\begin{equation*}
T(u)=\langle u, w\rangle_{H} \forall u \in H \text { and }\|T\|=\|w\|_{H} . \tag{5.31}
\end{equation*}
$$

Solution:
(1) The finite sum $w_{N}=\sum_{i=1}^{N} w_{i} e_{i}$ is an element of the Hilbert space with norm $\left\|w_{N}\right\|_{N}^{2}=\sum_{i=1}^{N}\left|w_{i}\right|^{2}$ by Bessel's identity. Expanding out

$$
\begin{equation*}
T\left(w_{N}\right)=T\left(\sum_{i=1}^{N} w_{i} e_{i}\right)=\sum_{i=1}^{n} w_{i} T\left(e_{i}\right)=\sum_{i=1}^{N}\left|w_{i}\right|^{2} \tag{5.32}
\end{equation*}
$$

and from the continuity of T,

$$
\begin{equation*}
\left|T\left(w_{N}\right)\right| \leq C\left\|w_{N}\right\|_{H} \Longrightarrow\left\|w_{N}\right\|_{H}^{2} \leq C\left\|w_{N}\right\|_{H} \Longrightarrow\left\|w_{N}\right\|^{2} \leq C^{2} \tag{5.33}
\end{equation*}
$$

which is the desired inequality.
(2) Letting $N \rightarrow \infty$ it follows that the infinite sum converges and

$$
\begin{equation*}
\sum_{i}\left|w_{i}\right|^{2} \leq C^{2} \Longrightarrow w=\sum_{i} w_{i} e_{i} \in H \tag{5.34}
\end{equation*}
$$

since $\left\|w_{N}-w\right\| \leq \sum_{j>N}\left|w_{i}\right|^{2}$ tends to zero with N.
(3) For any $u \in H u_{N}=\sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle e_{i}$ by the completness of the $\left\{e_{i}\right\}$ so from the continuity of T

$$
\begin{align*}
T(u)=\lim _{N \rightarrow \infty} T\left(u_{N}\right)=\lim _{N \rightarrow \infty} & \sum_{i=1}^{N}\left\langle u, e_{i}\right\rangle T\left(e_{i}\right) \tag{5.35}\\
& =\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\langle u, w_{i} e_{i}\right\rangle=\lim _{N \rightarrow \infty}\left\langle u, w_{N}\right\rangle=\langle u, w\rangle
\end{align*}
$$

where the continuity of the inner product has been used. From this and Cauchy's inequality it follows that $\|T\|=\sup _{\|u\|_{H}=1}|T(u)| \leq\|w\|$. The converse follows from the fact that $T(w)=\|w\|_{H}^{2}$.

Department of Mathematics, Massachusetts Institute of Technology

