18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

PROBLEM SET 5 FOR 18.102, SPRING 2009 DUE 11AM TUESDAY 17 MAR.

RICHARD MELROSE

You should be thinking about using Lebesgue's dominated convergence at several points below.

PROBLEM 5.1

Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be an element of $\mathcal{L}^1(\mathbb{R})$. Define

(5.1)
$$f_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & \text{otherwise.} \end{cases}$$

Show that $f_L \in \mathcal{L}^1(\mathbb{R})$ and that $\int |f_L - f| \to 0$ as $L \to \infty$.

Problem 5.2

Consider a real-valued function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which is locally integrable in the sense that

(5.2)
$$g_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & x \in \mathbb{R} \setminus [-L, L] \end{cases}$$

is Lebesgue integrable of each $L \in \mathbb{N}$.

(1) Show that for each fixed L the function

(5.3)
$$g_L^{(N)}(x) = \begin{cases} g_L(x) & \text{if } g_L(x) \in [-N, N] \\ N & \text{if } g_L(x) > N \\ -N & \text{if } g_L(x) < -N \end{cases}$$

- is Lebesgue integrable. (2) Show that $\int |g_L^{(N)} g_L| \to 0$ as $N \to \infty$. (3) Show that there is a sequence, h_n , of step functions such that

(5.4)
$$h_n(x) \to f(x)$$
 a.e. in \mathbb{R}

(4) Defining

(5.5)
$$h_{n,L}^{(N)} = \begin{cases} 0 & x \notin [-L, L] \\ h_n(x) & \text{if } h_n(x) \in [-N, N], \ x \in [-L, L] \\ N & \text{if } h_n(x) > N, \ x \in [-L, L] \\ -N & \text{if } h_n(x) < -N, \ x \in [-L, L] \end{cases}.$$

Show that $\int |h_{n,L}^{(N)} - g_L^{(N)}| \to 0$ as $n \to \infty.$

RICHARD MELROSE

Problem 5.3

Show that $\mathcal{L}^2(\mathbb{R})$ is a Hilbert space.

First working with real functions, define $\mathcal{L}^2(\mathbb{R})$ as the set of functions $f:\mathbb{R}\longrightarrow\mathbb{R}$ which are locally integrable and such that $|f|^2$ is integrable.

- (1) For such f choose h_n and define g_L, g_L^(N) and h_n^(N) by (5.2), (5.3) and (5.5).
 (2) Show using the sequence h_{n,L}^(N) for fixed N and L that g_L^(N) and (g_L^(N))² are in L¹(ℝ) and that ∫ |(h_{n,L}^(N))² (g_L^(N))²| → 0 as n → ∞.
 (3) Show that (g_L)² ∈ L¹(ℝ) and that ∫ |(g_L^(N))² (g_L)²| → 0 as N → ∞.
 (4) Show that ∫ |(g_L)² f²| → 0 as L → ∞.
 (5) Show that f a ∈ C²(ℝ) then fa ∈ C¹(ℝ) and that

- (5) Show that $f, g \in \mathcal{L}^2(\mathbb{R})$ then $fg \in \mathcal{L}^1(\mathbb{R})$ and that

(5.6)
$$|\int fg| \leq \int |fg| \leq ||f||_{L^2} ||g||_{L^2}, \ ||f||_{L^2}^2 = \int |f|^2.$$

- (6) Use these constructions to show that $\mathcal{L}^2(\mathbb{R})$ is a linear space.
- (7) Conclude that the quotient space $L^2(\mathbb{R}) = \mathcal{L}^2(\mathbb{R})/\mathcal{N}$, where \mathcal{N} is the space of null functions, is a real Hilbert space.
- (8) Extend the arguments to the case of complex-valued functions.

Problem 5.4

Consider the sequence space

(5.7)
$$h^{2,1} = \left\{ c : \mathbb{N} \ni j \longmapsto c_j \in \mathbb{C}; \sum_j (1+j^2) |c_j|^2 < \infty \right\}$$

(1) Show that

(5.8)
$$h^{2,1} \times h^{2,1} \ni (c,d) \longmapsto \langle c,d \rangle = \sum_{j} (1+j^2) c_j \overline{d_j}$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.

(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^2 by $\|\cdot\|_2$, show that

(5.9)
$$h^{2,1} \subset l^2, \ \|c\|_2 \le \|c\|_{2,1} \ \forall \ c \in h^{2,1}.$$

Problem 5.5

In the separable case, prove Riesz Representation Theorem directly. Choose an orthonormal basis $\{e_i\}$ of the separable Hilbert space H. Suppose $T: H \longrightarrow \mathbb{C}$ is a bounded linear functional. Define a sequence

(5.10)
$$w_i = \overline{T(e_i)}, \ i \in \mathbb{N}.$$

(1) Now, recall that $|Tu| \leq C ||u||_H$ for some constant C. Show that for every finite N,

(5.11)
$$\sum_{j=1}^{N} |w_i|^2 \le C^2.$$

PROBLEMS 5

(2) Conclude that
$$\{w_i\} \in l^2$$
 and that
(5.12) $w = \sum_i w_i e_i \in H.$

(3) Show that

(5.13)
$$T(u) = \langle u, w \rangle_H \ \forall \ u \in H \text{ and } \|T\| = \|w\|_H.$$

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY