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95 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 16. Tuesday, April 7: partially reconstructed 

From last time 

Proposition 23. The invertible elements form an open subset GL(H) ⊂ B(H). 

Proof. Recall that we showed using the convergence of the Neumann series that if 
B ∈ B(H) and �B� < 1 then Id −B is invertible, meaning it has a two-sided inverse 
in B(H) (which we know, from the open mapping Theorem to be equivalent to it 
being a bijection). 

So, suppose G ∈ GL(H), meaning it has a two-sided (and unique) inverse G−1 ∈ 
B(H) : 

(16.1) G−1G = GG−1 = Id . 

Then we wish to show that B(G; �) ⊂ GL(H) for some � > 0. In fact we shall see 
that we can take � = �G−1�−1 . The idea is that we wish to show that G + B is a 
bijection, and hence invertible. To do so set 

(16.2) E = G−1B = G + B = G−1(Id +G−1B).⇒ 

This is injective if Id +G−1B is injective, and surjective if Id +G−1B is surjective, 
since G−1 is a bijection. From last time we know that 

(16.3) �G−1B� < 1 =⇒ Id +G−1B is invertible. 

Since �G−1B� ≤ �G−1��B� this follows if �B� < �G−1�−1 as anticipated. � 

Thus GL(H) ⊂ B(H), the set of invertible elements, is open. It is also a group 
– since the inverse of G1G2 if G1, G2 ∈ GL(H) is G−1G−1 .2 1 

This group of invertible elements has a smaller subgroup, U(H), the unitary 
group, defined by 

(16.4) U(H) = {U ∈ GL(H); U−1 = U∗}. 

The unitary group consists of the linear isometric isomorphisms of H onto itself – 
thus 

(16.5) (Uu,Uv) = (u, v), �Uu� = �u� ∀ u, v ∈ H, U ∈ U(H). 

This is an important object and we will use it a little bit later on. 
The unitary group on a separable Hilbert space may seem very similar to the 

familiar unitary group of n × n matrices, U(n). It is, of course it is much bigger for 
one thing. In fact there are some other important differences which I will describe 
a little later on (or get you to do some of it in the problems). On important fact 
that you should know, even though I will not prove it, is that U(H) is contractible 
as a metric space – it has no significant topology. This is to be constrasted with 
the U(n) which have a lot of topology, and not at all simple spaces – especially for 
large n. One upshot of this is that U(H) does not look much like the limit of the 
U(n) as n →∞. 

Now, for the rest of today I will talk about the opposite of the ‘big’ operators 
such as the elements of GL(H). 

Definition 7. An operator T ∈ B(H) is of finite rank if its range has finite dimension 
(and that dimension is called the rank of T ); the set of finite rank operators is 
denoted R(B). 
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Why not F(B)? Because we want to use this for the Fredholm operators. 
Clearly the sum of two operators of finite rank has finite rank, since the range 

is contained in the sum of the ranges (but is often smaller): 

(16.6)	 (T1 + T2u) ∈ Ran(T1) + Ran(T2). 

Since the range of a constant multiple of T is contained in the range of T it follows 
that the finite rank operators form a linear subspace of B(H). 

It is also clear that 

(16.7) B ∈ B(H) and T ∈ R(B) then BT ∈ R(B). 

Indeed, the range of BT is the range of B restricted to the range of T and this is 
certainly finite dimensional since it is spanned by the image of a basis of Ran(T ). 
Similalry TB ∈ R(H) since the range of TB is contained in the range of T. Thus 
we have in fact proved most of 

Proposition 24. The finite rank operators form a ∗-closed ideal in B(H), which 
is to say a linear subspace such that 

(16.8) B1, B2 ∈ B(H), T ∈ R(H) =⇒ B1TB2, T ∗ ∈ R(H). 

Proof. In fact it is only the fact that T ∗ is of finite rank if T is which remains 
to be checked. To do this let us find an explicit representation for an operator 
of finite rank. First, since Ran(T ) is finite dimensional, we can choose a basis, fi 

i = 1, . . . , N, for it. Then for any element u ∈ H, 
N

(16.9)	 Tu = cifi. 
i=1 

The constants ci are determined, since the fi are a basis, and so define linear 
functionals u �−→ ci. These are continuous. In fact we can simply choose the fi to 
be orthonormal and then, pairing (16.9) with fj we see that 

(16.10)	 cj = (Tu, fj ) = (u, T ∗fj ). 

In particular there are elements (really by Riesz’ theorem) ei = T ∗fi ∈ H sucht 
that 

N

(16.11)	 Tu = (u, ei)fi. 
i=1 

Conversely, if T can be written in the form (16.11) then it is of finite rank, since 
its range is contained in the span of the fi. 

From (16.11) it follows that T ∗ is also of finite rank since 

N	 N

(16.12) (T ∗v, u) = (v, Tu) = (v, fi)(ei, u) ∀ u ∈ H = ⇒ T ∗v = (u, fi)ei. 
j=1 i=1 

The rôles of the fi and ei are simply interchanged. � 

Next time I will show that the closure of the ideal R(H) in B(H) is the ideal 
of compact operators. Of course this closure is certainly closed(!) Moreover it is a 
∗-closed ideal, since Tn → K in norm and B1, B2 ∈ B(H) implies 

(16.13)	 B1TnB2 → B1KB2, Tn 
∗ → K∗. 
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So, once we prove that the compact operators are the closure of the finite rank 
operators we will know that they form a closed, ∗-ideal. 

Notice that the importance of the ideal condition – it is the analogue of the 
normal condition for a subgroup – is that the quotient B/I of the algebra by an 
ideal is again an algebra. The quotient by the ideal, K(H), of compact operators 
is a Banach space since K is closed. It is called the Calkin algebra. 

Lemma 11 (Row rank=Colum rank). For any finite rank operator on a Hilbert 
space, the dimension of the range of T is equal to the dimension of the ranfe of T ∗. 

Proof. We showed that a finite rank operator T always takes the form (16.11). If 
the fi are taken to be a basis for the range of T, so N = dim Ran(T ), then the ei 

must be linearly independent. Indeed, if not then one of the ei can be replaced by 
a linear combination ei = cj ej . Inserting this into (16.11) shows that 

j=i 

(16.14)	 Tu = (u, ej )(fj + cj fi) 
j=i 

from which it follows that the range has dimension at most N −1 – which contradicts 
the choice of the fi. 

Since the ei are independent it follows from (16.12) that the range of T ∗ has 
dimension N (since the fi are independent) – if you like just say dim Ran(T ∗) ≤ N 
for all finite rank T and then use the fact that (T ∗)∗ = T to deduce equality. � 
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Problem set 8, Due 11AM Tuesday 14 April. 

Okay, I forgot to put the problems up. So, here are three problems that should 
be reasonably quick. If anyone is seriously inconvenienced by the limited time they 
have to work on them, just let me know and I will give you a couple of days. 

Problem 8.1 Show that a continuous function K : [0, 1] −→ L2(0, 2π) has the 
property that the Fourier series of K(x) ∈ L2(0, 2π), for x ∈ [0, 1], converges 
uniformly in the sense that if Kn(x) is the sum of the Fourier series over k
then Kn : [0, 1] −→ L2(0, 2π) is also continuous and 

| | ≤ n 

(16.15) sup �K(x) − Kn(x)�L2(0,2π) → 0. 
x∈[0,1] 

Hint. Use one of the properties of compactness in a Hilbert space that you proved 
earlier. 

Problem 8.2 
Consider an integral operator acting on L2(0, 1) with a kernel which is continuous 

– K ∈ C([0, 1]2). Thus, the operator is 

(16.16) Tu(x) = K(x, y)u(y). 
(0,1) 

Show that T is bounded on L2 (I think we did this before) and that it is in the 
norm closure of the finite rank operators. 

Hint. Use the previous problem! Show that a continuous function such as K in 
this Problem defines a continuous map [0, 1] � x �−→ K(x, ) ∈ C([0, 1]) and hence ·
a continuous function K : [0, 1] −→ L2(0, 1) then apply the previous problem with 
the interval rescaled. 

Here is an even more expanded version of the hint: You can think of K(x, y) as 
a continuous function of x with values in L2(0, 1). Let Kn(x, y) be the continuous 
function of x and y given by the previous problem, by truncating the Fourier series 
(in y) at some point n. Check that this defines a finite rank operator on L2(0, 1) 
– yes it maps into continuous functions but that is fine, they are Lebesgue square 
integrable. Now, the idea is the difference K − Kn defines a bounded operator with 
small norm as n becomes large. It might actually be clearer to do this the other 
way round, exchanging the roles of x and y. 

Problem 8.3 Although we have concentrated on the Lebesgue integral in one 
variable, you proved at some point the covering lemma in dimension 2 and that is 
pretty much all that was needed to extend the discussion to 2 dimensions. Let’s just 
assume you have assiduously checked everything and so you know that L2((0, 2π)2) 
is a Hilbert space. Sketch a proof – noting anything that you are not sure of – that 
the functions exp(ikx + ily)/2π, k, l ∈ Z, form a complete orthonormal basis. 
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Solutions to Problem set 7 

Problem 7.1 Question:- Is it possible to show the completeness of the Fourier 
basis 

exp(ikx)/
√

2π 

by computation? Maybe, see what you think. These questions are also intended to 
get you to say things clearly. 

(1) Work out the Fourier coefficients ck(t) = 
(0,2π) fte

−ikx of the step function 

(2) Explain why this Fourier series converges to ft in L2(0, 2π) if and only if 

� 

(16.17) ft(x) = 
1 

0 

0 ≤ x < t 

t ≤ x ≤ 2π 

for each fixed t ∈ (0, 2π). 

(16.18) 2 |ck(t)|2 = 2πt − t2 , t ∈ (0, 2π). 
k>0 

(3) Write this condition out as a Fourier series and apply the argument again 
to show that the completeness of the Fourier basis implies identities for the 
sum of k−2 and k−4 . 

(4) Can you explain how reversing the argument, that knowledge of the sums of 
these two series should imply the completeness of the Fourier basis? There 
is a serious subtlety in this argument, and you get full marks for spotting 
it, without going ahead a using it to prove completeness. 

Problem 7.2 Prove that for appropriate constants dk, the functions dk sin(kx/2), 
k ∈ N, form an orthonormal basis for L2(0, 2π). 

Hint: The usual method is to use the basic result from class plus translation 
and rescaling to show that d� exp(ikx/2) k ∈ Z form an orthonormal basis of k 
L2(−2π, 2π). Then extend functions as odd from (0, 2π) to (−2π, 2π). 

Problem 7.3 Let ek, k ∈ N, be an orthonormal basis in a separable Hilbert space, 
H. Show that there is a uniquely defined bounded linear operator S : H −→ H, 
satisfying 

(16.19) Sej = ej+1 ∀ j ∈ N. 
Show that if B : H −→ H is a bounded linear operator then S +�B is not invertible 
if � < �0 for some �0 > 0. 

Hint:- Consider the linear functional L : H −→ C, Lu = (Bu, e1). Show that 
B�u = Bu − (Lu)e1 is a bounded linear operator from H to the Hilbert space 
H1 = {u ∈ H; (u, e1) = 0}. Conclude that S + �B� is invertible as a linear map from 
H to H1 for small �. Use this to argue that S + �B cannot be an isomorphism from 
H to H by showing that either e1 is not in the range or else there is a non-trivial 
element in the null space. 

Problem 7.4 Show that the product of bounded operators on a Hilbert space is 
strong continuous, in the sense that if An and Bn are strong convergent sequences 
of bounded operators on H with limits A and B then the product AnBn is strongly 
convergent with limit AB. 

Hint: Be careful! Use the result in class which was deduced from the Uniform 
Boundedness Theorem. 




