MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 8.1 Show that a continuous function $K:[0,1] \longrightarrow L^{2}(0,2 \pi)$ has the property that the Fourier series of $K(x) \in L^{2}(0,2 \pi)$, for $x \in[0,1]$, converges uniformly in the sense that if $K_{n}(x)$ is the sum of the Fourier series over $|k| \leq n$ then $K_{n}:[0,1] \longrightarrow L^{2}(0,2 \pi)$ is also continuous and

$$
\begin{equation*}
\sup _{x \in[0,1]}\left\|K(x)-K_{n}(x)\right\|_{L^{2}(0,2 \pi)} \rightarrow 0 \tag{18.8}
\end{equation*}
$$

Hint. Use one of the properties of compactness in a Hilbert space that you proved earlier.

Problem 8.2
Consider an integral operator acting on $L^{2}(0,1)$ with a kernel which is continuous $-K \in \mathcal{C}\left([0,1]^{2}\right)$. Thus, the operator is

$$
\begin{equation*}
T u(x)=\int_{(0,1)} K(x, y) u(y) \tag{18.9}
\end{equation*}
$$

Show that T is bounded on L^{2} (I think we did this before) and that it is in the norm closure of the finite rank operators.

Hint. Use the previous problem! Show that a continuous function such as K in this Problem defines a continuous map $[0,1] \ni x \longmapsto K(x, \cdot) \in \mathcal{C}([0,1])$ and hence a continuous function $K:[0,1] \longrightarrow L^{2}(0,1)$ then apply the previous problem with the interval rescaled.

Here is an even more expanded version of the hint: You can think of $K(x, y)$ as a continuous function of x with values in $L^{2}(0,1)$. Let $K_{n}(x, y)$ be the continuous function of x and y given by the previous problem, by truncating the Fourier series (in y) at some point n. Check that this defines a finite rank operator on $L^{2}(0,1)$ - yes it maps into continuous functions but that is fine, they are Lebesgue square integrable. Now, the idea is the difference $K-K_{n}$ defines a bounded operator with small norm as n becomes large. It might actually be clearer to do this the other way round, exchanging the roles of x and y.

Problem 8.3 Although we have concentrated on the Lebesgue integral in one variable, you proved at some point the covering lemma in dimension 2 and that is pretty much all that was needed to extend the discussion to 2 dimensions. Let's just assume you have assiduously checked everything and so you know that $L^{2}\left((0,2 \pi)^{2}\right)$ is a Hilbert space. Sketch a proof - noting anything that you are not sure of - that the functions $\exp (i k x+i l y) / 2 \pi, k, l \in \mathbb{Z}$, form a complete orthonormal basis.

