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Lecture 6. Tuesday, Feb 24 

By now the structure of the proofs should be getting somewhat routine – but I 
will go on to the point that I hope it all becomes clear! 

So, recall the definitions of a Lebesgue integrable function on the line (forming 
the linear space L1(R)) and of a set of measure zero E ⊂ R. 

The first thing we want to show is that the putative norm on L1 does make 
sense. 

Proposition 9. If f ∈ L1(R) then |f | ∈ L1(R) and if fn is an absolutely summable 
series of step functions converging to f almost everywhere then � � N

(6.1) f = lim fk .| | 
N→∞ 

| 
k=1 

|

So in some sense the definition of the Lebesgue integral ‘involves no cancellations’. 
There are extensions of the integral, we may even see one, which do exploit cancel
lations. 

Proof. By definition if f ∈ L1(R) then it is the limit, on the set of absolute conver
gence, of a summable series of step functions, {fn}. We need to make such a series 
for |f |. The idea in this case is the ‘obvious’ one. We know that 

n

(6.2) fj (x) → f(x) if |fj (x)| < ∞. 
j=1 j 

So, set 
k �� k−1

(6.3) g1(x) = |f1(x)|, gk(x) = | fj (x)| − | fj (x)| ∀ x ∈ R. 
j=1 j=1 

Then, for sure, 
N N

(6.4) gk(x) = | fj (x)| → |f(x)| if |fj (x)| < ∞. 
k=1 j=1 j 

So, what we need to check, for a start, is that {gj } is an absolutely summable series 
of step functions. 

The triangle inequality in the form ||v| − |w|| ≤ |v − w| shows that, for k > 1, 

k k−1

(6.5) |gk(x)| = || fj (x)| − | fj (x)|| ≤ |fk(x)|. 
j=1 j=1 

Thus 

(6.6) |gk| ≤ |fk| < ∞ 
k k 

so the gk’s do indeed form an absolutely summable series. From its construction 
we know that 

N N

(6.7) gk(x) = | fj (x)| → |f(x)| if |fn(x)| < ∞. 
k=1 j=1 n 
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So, this is what we want except that the set on which |gk(x)| < ∞ may be larger 
k 

than the set for which we have convergence here. Now, in the notes there is a result 
to handle this, but we can simply make the series converge less rapidly by adding 
a ‘pointless’ subseries. Namely replace gk by ⎧ ⎪gk(x) if n = 3k − 2⎨ 
(6.8)	 hn(x) = ⎪fk(x) if n = 3k − 1 ⎩ −fk(x) if n = 3k. 

This series converges absolutely if and only if both the |gk(x)| and |fk(x)| series 
converge – the convergence of the latter implies the convergence of the former so 

(6.9)	 |hn(x)| < ∞⇐⇒ |fk(x)|. 
n	 k 

On the other hand when this holds, 

(6.10)	 hn(x) = |f(x)|
n 

since each partial sum is either a sum for gk, or this with fn(x) added. Since 
fn(x) → 0, (6.10) holds whenever the series converges absolutely, so indeed |f | ∈

1(R).L
Then (6.1) follows. � 

Now, the next thing we want to know is when ‘norm’ vanishes. That is, when 
does |f | = 0? One way is fairly easy, I think I actually skated over this a bit in 
the lecture, so let me write it out carefully here. The result we are after is:

Proposition 10. For an integrable function f ∈ L1(R), the vanishing of |f |
implies that f is a null function in the sense that 

(6.11) f(x) = 0 ∀ x ∈ R \ E where E is of measure zero. 

Conversely, if (6.11) holds then f ∈ L1(R) and |f | = 0. 

Proof. The main part of this is the first part, that the vanishing of |f | implies 
that f is null. This I will prove using the next Proposition. The converse is the 
easier direction. 

Namely, if f is null in the sense of (6.11) then, by the definition of a set of 
measure zero, there exists an absolutely summable series of step functions, fn, such 
that 

(6.12)	 E ⊂ {x ∈ R; |fn(x)| = ∞}. 
n 

Note that it is possible that the absolute series here diverges on a larger set than 
E. Still, if we consider the alternating series 

(6.13)	 gn(x) = 
fk(x) if n = 2k − 1 

−fk(x) if n = 2k 

then 

(6.14)	 gn(x) = 0 whenever 
n 
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since the latter condition is equivalent to 
n 
|fn(x)| < ∞. So in fact 

(6.15)	 |gn(x)| < ∞ = ⇒ f(x) = gn(x) = 0 
n	 n 

because of (6.12). Thus the null function f ∈ L1(R), and so is |f | and from (6.15) 

(6.16)	 |f | = gk = lim fk = 0 
k

k→∞ 

where the last statement follows from the absolute summability. � 

For the converse argument we will use the following result, which is also closely 
related to the completeness of L1(R). 

Proposition 11. If fn ∈ L1(R) is an absolutely summable series, in the sense that 

n 
|fn| < ∞ then 

(6.17) E = {x ∈ R; |fn(x)| = ∞} has measure zero 
n 

and if f : R −→ C and 

(6.18)	 f(x) = fn(x) ∀ x ∈ R \ E 
n 

then f ∈ L1(R) and 

(6.19)	 f = fn. 
n 

So this basically says we can replace ‘step function’ by ‘integrable function’ in the 
definition and get the same result. Of course this makes no sense without the 
original definition. 

Proof. The proof is very like the proof of completeness of the ‘completion’ of a 
normed space that was in Problems 2, here it is a little more concrete. 

Thus, by assumption each fn ∈ L1(R), so there exists an absolutely summable 
series of step functions fn,j , so |fn,j | < ∞ and 

j 

(6.20)	 |fn,j (x)| < ∞ = ⇒ fn(x) = fn,j (x). 
j j 

We can expect f(x) to be given by the sum of the fn,j (x) over both n and j, but 
in general, this double series is not absolutely summable. However we can make it 
so. Simply choose Nn for each n so that 

(6.21)	 |fn,j | < 2−n . 
j>Nn 

This is possible by the assumed absolute summability – so the tail of the series is 
small. Having done this, we replace the series fn,j by 

(6.22) f � = fn,j (x), n,j +k−1(x) ∀ j ≥ 2.n,1	 f � (x) = fn,Nn

j≤Nn 
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This still converges to fn on the same set as in (6.20). So in fact we can simply 
replace fn,j by f � and we have in addition the estimate n,j 

(6.23)	 f � fn + 2−n+1 ∀ n.| n,j | ≤ |	 |
j 

This follows from the triangle inequality since, using (6.21), � N � � � 
(6.24) f � f � f � f � f �| n,1 + n,j | ≥ | n,1| − | n,j | ≥ | n,1| − 2−n 

k=1	 j≥2 

and the left side converges to |fn| by (6.1) as N → ∞. Using (6.21) again gives 
(6.23). 

So, now dropping the primes from the notation and using the new series as fn,j 

we can set 

(6.25)	 gk(x) = fn,j . 
n+j=k 

This gives a new series of step functions which is absolutely summable since 
N � � � 

(6.26)	 |gk| ≤ |fn,j | ≤ ( |fn| + 2−n+1) < ∞. 
k=1 n,j n 

Now, using rearrangement of absolutely convergent series we see that 

(6.27)	 |fn,j (x)| < ∞ = ⇒ f(x) = |gk(x)| = fn,j (x). 
n,j k n j 

From a result last week, we know that the set on the left here is of the form R \ E 
where E is of measure zero; E is the union of the sets En on which |fn,j (x)| = ∞. 

j 

So, take another absolutel summable series of step functions hk which diverges on 
E (at least) and insert hk and −hk between successive gk’s as before. This new 
series still coverges to f by (6.27) and shows that f ∈ L1(R) as well as (6.17). 
The final result (6.19) also follows by rearranging the double series for the integral 
(which is also absolutely convergent). � 

Now for the moment we only need the weakest part, (6.17), of this. That is for 
any absolutely summable series of integrable functions the absolute pointwise series 
converges off a set of measure zero – can only diverge on a set of measure zero. It 
is rather shocking but this allows us to prove the rest of (10)! Namely, suppose 
f ∈ L1(R) and |f | = 0. Then Proposition 11 applies to the series with each term 
being |f |. This is absolutely summable since all the integrals are zero. So it must 
converge pointwise except on a set of measure zero. Clearly it diverges whenever 
f(x) = 0, so 

(6.28) |f | = o =⇒ {x; f(x) = 0� } has measure zero 

which is what we wanted to show. 
Finally this allows us to define the standard Lebesgue space 

(6.29) L1(R) = L1(R)/N ,	 N = {null functions}
and to check that |f | is indeed a norm on this space. 
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Problem set 3, Due 11AM Tuesday 3 Mar. 

This problem set is also intended to be a guide to what will be on the in-class 
test on March 5. In particular I will ask you to prove some of the properties of the 
Lebesgue integral, as below, plus one more abstract proof. Recall that equality a.e 
(almost everywhere) means equality on the complement of a set of measure zero. 

Problem 3.1 If f and g ∈ L1(R) are Lebesgue integrable functions on the line 
show that 

(1) If f(x) ≥ 0 a.e. then f ≥ 0. 
(2) If f(x) ≤ g(x) a.e. then f ≤ g. 
(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and 
| Re f | ≤ |f |. 

(4) For a general complex-valued Lebesgue integrable function 

(6.30) | f | ≤ |f |. 

Hint: You can look up a proof of this easily enough, but the usual trick is to 
choose θ ∈ [0, 2π) so that eiθ f = (eiθf) ≥ 0. Then apply the preceeding 
estimate to g = eiθf. 

(5) Show that the integral is a continuous linear functional 

(6.31) : L1(R) −→ C. 

Problem 3.2 If I ⊂ R is an interval, including possibly (−∞, a) or (a, ∞), we 
define Lebesgue integrability of a function f : I −→ C to mean the Lebesgue 
integrability of 

(6.32) f̃(x) = 
f(x) x ∈ I 

f̃ : R −→ C, 
0 x ∈ R \ I. 

The integral of f on I is then defined to be 

(6.33) f = f. ˜
I 

(1) Show that the space of such integrable functions on I is linear, denote it 
L1(I). 

(2) Show that is f is integrable on I then so is |f |. 
(3) Show that if f is integrable on I and 

I |f | = 0 then f = 0 a.e. in the sense 
that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a subset 
of R. 

(4) Show that the set of null functions as in the preceeding question is a linear 
space, denote it N (I). 

(5) Show that 
I |f | defines a norm on L1(I) = L1(I)/N (I). 

(6) Show that if f ∈ L1(R) then � 

(6.34) g : I −→ C, g(x) = 
f(x) 
0 

x ∈ I 

x ∈ R \ I 

is integrable on I. 
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(7) Show that the preceeding construction gives a	 surjective and continuous 
linear map ‘restriction to I’ 

(6.35)	 L1(R) −→ L1(I). 

(Notice that these are the quotient spaces of integrable functions modulo 
equality a.e.)


Problem 3.3 Really continuing the previous one.

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b) 

is an element of L1(Ix) for all a ≤ x < b. 
(2) Show that the function 

(6.36)	 F (x) = f : [a, b) −→ C 
Ix 

is continuous. 
(3) Prove that the function	 x−1 cos(1/x) is not Lebesgue integrable on the 

interval (0, 1]. Hint: Think about it a bit and use what you have shown 
above. 

Problem 3.4 [Harder but still doable] Suppose f ∈ L1(R). 
(1) Show that for each t ∈ R the translates 

(6.37)	 ft(x) = f(x − t) : R −→ C 

are elements of L1(R). 
(2) Show that 

(6.38)	
t
lim 

0 
|ft − f | = 0. 

→

This is called ‘Continuity in the mean for integrable functions’. Hint: I will 
add one! 

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’) 

(6.39)	 R � t �−→ [ft] ∈ L1(R) 

is continuous. 
Problem 3.5 In the last problem set you showed that a continuous function on a 

compact interval, extended to be zero outside, is Lebesgue integrable. Using this, 
and the fact that step functions are dense in L1(R) show that the linear space of 
continuous functions on R each of which vanishes outside a compact set (which 
depends on the function) form a dense subset of L1(R). 

Problem 3.6 

(1) If	 g : R −→ C is bounded and continuous and f ∈ L1(R) show that 
gf ∈ L1(R) and that � � 

(6.40)	 gf ≤ sup g f .| | 
R 
| | · | |

(2) Suppose now that G ∈ C([0, 1] × [0, 1]) is a continuous function (I use C(K) 
to denote the continuous functions on a compact metric space). Recall from 
the preceeding discussion that we have defined L1([0, 1]). Now, using the 
first part show that if f ∈ L1([0, 1]) then 

(6.41)	 F (x) = G(x, )f( ) ∈ C·	 ·
[0,1] 
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(where is the variable in which the integral is taken) is well-defined for · 
each x ∈ [0, 1]. 

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1]. 
(4) Show that 

(6.42) L1([0, 1]) � f �−→ F ∈ C([0, 1]) 

is a bounded (i.e. continuous) linear map into the Banach space of contin
uous functions, with supremum norm, on [0, 1]. 
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Solutions to Problem set 2 

I was originally going to make this problem set longer, since there is a missing 
Tuesday. However, I would prefer you to concentrate on getting all four of these 
questions really right! 

Problem 2.1 Finish the proof of the completeness of the space B constructed in 
lecture on February 10. The description of that construction can be found in the 
notes to Lecture 3 as well as an indication of one way to proceed. 

Solution. The proof could be shorter than this, I have tried to be fairly complete. 
To recap. We start of with a normed space V. From this normed space we 

construct the new linear space Ṽ with points the absolutely summable series in V. 
Then we consider the subspace S ⊂ Ṽ of those absolutely summable series which 
converge to 0 in V. We are interested in the quotient space 

˜(6.43)	 B = V /S. 

What we know already is that this is a normed space where the norm of b = {vn}+S 
– where {vn} is an absolutely summable series in V is 

N

(6.44)	 �b�B = lim vn�V . 
N →∞ 

� 
n=1 

This is independent of which series is used to represent b – i.e. is the same if an 
element of S is added to the series. 

Now, what is an absolutely summable series in B? It is a sequence {bn}, thought 
of a series, with the property that 

(6.45)	 �bn�B < ∞. 
n 

We have to show that it converges in B. The first task is to guess what the limit 
should be. The idea is that it should be a series which adds up to ‘the sum of the 
bn’s’. Each bn is represented by an absolutely summable series vk 

(n) in V. So, we 
can just look for the usual diagonal sum of the double series and set 

(6.46)	 wj = vk 
(n) 
. 

n+k=j 

The problem is that this will not in generall be absolutely summable as a series in 
V. What we want is the estimate 

(6.47)	 �wj � = � vk 
(n)� < ∞. 

j j j=n+k 

The only way we can really estimate this is to use the triangle inequality and 
conclude that 

(6.48)	
∞

�wj � ≤ �vk 
(n)�V . 

j=1 k,n 

Each of the sums over k on the right is finite, but we do not know that the sum 
over k is then finite. This is where the first suggestion comes in:

We can choose the absolutely summable series vk 
(n) representing bn such that 

(6.49)	 �vk 
(n)� ≤ �bn�B + 2−n . 

k 
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Suppose an initial choice of absolutely summable series representing bn is uk, so 
N

�bn� = limN→∞ � uk� and �uk�V	 < ∞. Choosing M large it follows that 
k=1 k 

(6.50)	 �uk�V ≤ 2−n−1 . 
k>M 

M

With this choice of M set v(n) = uk and v(n) = uM+k−1 for all k ≥ 2. This does 1 k 
k=1 

still represent bn since the difference of the sums, 

N N N+M−1 

(6.51)	 vk 
(n) − uk = − uk 

k=1 k=1 k=N 

for all N. The sum on the right tends to 0 in V (since it is a fixed number of terms). 
Moreover, because of (6.50), 
(6.52) 

M N	 N
(n)�vk �V = � uj �V + �uk� ≤ � uj � + 2 �uk� ≤ � uj � + 2−n 

k j=1 k>M	 j=1 k>M j=1 

for all N. Passing to the limit as N →∞ gives (6.49). 
Once we have chosen these ‘nice’ representatives of each of the bn’s if we define 

the wj ’s by (6.46) then (6.47) means that 

(6.53)	 �wj �V ≤ �bn�B + 2−n < ∞ 
j n n 

because the series bn is absolutely summable. Thus {wj } defines an element of Ṽ
and hence b ∈ B. 

Finally then we want to show that bn = b in B. This just means that we need 
n 

to show 

N

(6.54)	 lim bn�B = 0. 
N→∞ 

�b − 
n=1 

N

The norm here is itself a limit – b − bn is represented by the summable series 
n=1 

with nth term 

N

(6.55)	 wk − vk 
(n) 

n=1 

and the norm is then 
p N

(6.56)	 lim v
(n) 

p→∞ 
� 

k=1 

(wk − 
n=1 

k )�V . 

Then we need to understand what happens as N → ∞! Now, wk is the diagonal 
sum of the vj 

(n)’s so sum over k gives the difference of the sum of the vj 
(n) over the 

first p anti-diagonals minus the sum over a square with height N (in n) and width 
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p. So, using the triangle inequality the norm of the difference can be estimated by 
the sum of the norms of all the ‘missing terms’ and then some so 

p N

(6.57) � (wk − vk 
(n))�V ≤ �vl 

(m)�V 

k=1 n=1 l+m≥L 

where L = min(p,N). This sum is finite and letting p →∞ is replaced by the sum 
over l + m ≥ N. Then letting N → ∞ it tends to zero by the absolute (double) 
summability. Thus 

N

(6.58)	 lim bn�B = 0 
N →∞ 

�b − 
n=1 

which is the statelent we wanted, that bn = b. � 
n 

Problem 2.2 Let’s consider an example of an absolutely summable sequence 
of step functions. For the interval [0, 1) (remember there is a strong preference 
for left-closed but right-open intervals for the moment) consider a variant of the 
construction of the standard Cantor subset based on 3 proceeding in steps. Thus, 
remove the ‘central interval [1/3, 2/3). This leave C1 = [0, 1/3) ∪ [2/3, 1). Then 
remove the central interval from each of the remaining two intervals to get C2 = 
[0, 1/9) ∪ [2/9, 1/3) ∪ [2/3, 7/9) ∪ [8/9, 1). Carry on in this way to define successive 
sets Ck ⊂ Ck−1, each consisting of a finite union of semi-open intervals. Now, 
consider the series of step functions fk where fk(x) = 1 on Ck and 0 otherwise. 

(1) Check that this is an absolutely summable series. 
(2) For which x ∈ [0, 1) does |fk(x)| converge? 

k 
(3) Describe a function on [0, 1) which is shown to be Lebesgue integrable 

(as defined in Lecture 4) by the existence of this series and compute its 
Lebesgue integral. 

(4) Is this function Riemann integrable (this is easy, not hard, if you check the 
definition of Riemann integrability)? 

(5) Finally consider the function g which is equal to one on the union of all 
the subintervals of [0, 1) which are removed in the construction and zero 
elsewhere. Show that g is Lebesgue integrable and compute its integral. 

Solution. (1) The total length of the intervals is being reduced by a factor of 
2k

1/3 each time. Thus l(Ck) = 
3k . Thus the integral of f, which is non

negative, is actually 

2k � �∞ 2k 

(6.59)	 fk = 3k 
= ⇒ |fk| = 3k 

= 2 
k k=1 

Thus the series is absolutely summable. 
(2) Since the Ck are decreasing, Ck ⊃ Ck+1, only if 

(6.60)	 x ∈ E = Ck 

k 

does the series |fk(x)| diverge (to +∞) otherwise it converges. 
k 
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(3) The function defined as the sum of the series where it converges and zero 
otherwise ⎧�⎨ fk(x) x ∈ R \ E 

(6.61)	 f(x) = k ⎩0 x ∈ E 

is integrable by definition. Its integral is by definition 

(6.62)	 f = fk = 2 
k 

from the discussion above. 
(4) The function f is not Riemann integrable since it is not bounded – and this 

is part of the definition. In particular for x ∈ Ck \ Ck+1, which is not an 
empty set, f(x) = k. 

(5) The set F, which is the union of the intervals removed is [0, 1) \ E. Taking 
step functions equal to 1 on each of the intervals removed gives an absolutely 
summable series, since they are non-negative and the kth one has integral 
1/3×(2/3)k−1 for k = 1, . . . . This series converges to g on F so g is Lebesgue 
integrable and hence 

(6.63)	 g = 1. 

Problem 2.3 The covering lemma for R2 . By a rectangle we will mean a set of 
the form [a1, b1) × [a2, b2) in R2 . The area of a rectangle is (b1 − a1) × (b2 − a2). 

(1) We may subdivide a rectangle by subdividing either of the intervals – re
placing [a1, b1) by [a1, c1) ∪ [c1, b1). Show that the sum of the areas of 
rectangles made by any repeated subdivision is always the same as that of 
the original. 

(2) Suppose that a finite collection of disjoint rectangles has union a rectangle 
(always in this same half-open sense). Show, and I really mean prove, that 
the sum of the areas is the area of the whole rectange. Hint:- proceed by 
subdivision. 

(3) Now show that for any countable collection of disjoint rectangles contained 
in a given rectange the sum of the areas is less than or equal to that of the 
containing rectangle. 

(4) Show that if a finite collection of rectangles has union containing a given 
rectange then the sum of the areas of the rectangles is at least as large of 
that of the rectangle contained in the union. 

(5) Prove the extension of the preceeding result to a countable collection of 
rectangles with union containing a given rectangle. 

Solution. (1) For subdivision of one rectangle this is clear enough. Namely 
we either divide the first side into two or the second side in two at an 
intermediate point c. After subdivision the area of the two rectanges is 
either 

(c − a1)(b2 − a2) + (b1 − c)(b2 − a2) = (b1 − c1)(b2 − a2) or 
(6.64) 

(b1 − a1)(c − a2) + (b1 − a1)(b2 − c) = (b1 − c1)(b2 − a2). 
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this shows by induction that the sum of the areas of any the rectangles 
made by repeated subdivision is always the same as the original. 

(2) If a finite collection of disjoint rectangles has union a rectangle, say [a1, b2)×
[a−2, b2) then the same is true after any subdivision of any of the rectangles, 
by the previous result. Moreover after such subdivision the sum of the areas 
is always the same. Look at all the points C1 ⊂ [a1, b1) which occur as an 
endpoint of the first interval of one of the rectangles. Similarly let C2 be 
the corresponding set of end-points of the second intervals of the rectangles. 
Now divide each of the rectangles repeatedly using the finite number of 
points in C1 and the finite number of points in C2. The total area remains 
the same and now the rectangles covering [a1, b1) × [A2, b2) are precisely 
the Ai × Bj where the Ai are a set of disjoint intervals covering [a1, b1) 
and the Bj are a similar set covering [a2, b2). Applying the one-dimensional 
result from class we see that the sum of the areas of the rectangles with 
first interval Ai is the product 

(6.65)	 length of Ai × (b2 − a2). 

Then we can sum over i and use the same result again to prove what we 
want. 

(3) For any finite collection of disjoint rectangles contained in [a1, b1) × [a2, b2) 
we can use the same division process to show that we can add more disjoint 
rectangles to cover the whole big rectangle. Thus, from the preceeding 
result the sum of the areas must be less than or equal to (b1 − a1)(b2 − a2). 
For a countable collection of disjoint rectangles the sum of the areas is 
therefore bounded above by this constant. 

(4) Let the rectangles be	Di, i = 1, . . . , N the union of which contains the 
rectangle D. Subdivide D1 using all the endpoints of the intervals of D. 
Each of the resulting rectangles is either contained in D or is disjoint from 
it. Replace D1 by the (one in fact) subrectangle contained in D. Proceeding 
by induction we can suppose that the first N −k of the rectangles are disjoint 
and all contained in D and together all the rectangles cover D. Now look at 
the next one, DN−k+1. Subdivide it using all the endpoints of the intervals 
for the earlier rectangles D1, . . . , Dk and D. After subdivision of DN −k+1 

each resulting rectangle is either contained in one of the Dj , j ≤ N − k 
or is not contained in D. All these can be discarded and the result is to 
decrease k by 1 (maybe increasing N but that is okay). So, by induction 
we can decompose and throw away rectangles until what is left are disjoint 
and individually contained in D but still cover. The sum of the areas of 
the remaining rectangles is precisely the area of D by the previous result, 
so the sum of the areas must originally have been at least this large. 

(5) Now, for a countable collection of rectangles covering D = [a1, b1) × [a2, b2) 
we proceed as in the one-dimensional case. First, we can assume that there 
is a fixed upper bound C on the lengths of the sides. Make the kth rectangle 
a little larger by extending both the upper limits by 2−kδ where δ > 0. The 
area increases, but by no more than 2C2−k . After extension the interiors 
of the countable collection cover the compact set [a1, b1 − δ] × [a2, b1 − δ]. 
By compactness, a finite number of these open rectangles cover, and hence 
there semi-closed version, with the same endpoints, covers [a1, b1 − δ) × 
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[a2, b1 − δ). Applying the preceeding finite result we see that 

(6.66) Sum of areas + 2Cδ ≥ Area D − 2Cδ. 

Since this is true for all δ > 0 the result follows. 

I encourage you to go through the discussion of integrals of step functions – now 
based on rectangles instead of intervals – and see that everything we have done can 
be extended to the case of two dimensions. In fact if you want you can go ahead 
and see that everything works in Rn! 

Problem 2.4 

(1) Show that any continuous function on [0, 1] is the uniform limit on [0, 1) 
of a sequence of step functions. Hint:- Reduce to the real case, divide the 
interval into 2n equal pieces and define the step functions to take infimim 
of the continuous function on the corresponding interval. Then use uniform 
convergence. 

(2) By using the ‘telescoping trick’ show that any continuous function on [0, 1) 
can be written as the sum 

(6.67)	 fj (x) ∀ x ∈ [0, 1) 
i 

where the fj are step functions and |fj (x)| < ∞ for all x ∈ [0, 1). 
j 

(3) Conclude that any continuous function on [0, 1], extended to be 0 outside 
this interval, is a Lebesgue integrable function on R. 

Solution. (1) Since the real and imaginary parts of a continuous function are 
continuous, it suffices to consider a real continous function f and then 
add afterwards. By the uniform continuity of a continuous function on a 
compact set, in this case [0, 1], given n there exists N such that |x − y| ≤ 
2−N = ⇒ |f(x)−f(y)| ≤ 2−n . So, if we divide into 2N equal intervals, where 
N depends on n and we insist that it be non-decreasing as a function of n 
and take the step function fn on each interval which is equal to min f = inf f 
on the closure of the interval then 

(6.68)	 |f(x) − Fn(x)| ≤ 2−n ∀ x ∈ [0, 1) 

since this even works at the endpoints. Thus Fn f uniformly on [0, 1).→
(2) Now just define f1 = F1 and fk = Fk − Fk−1 for all k > 1. It follows that 

these are step functions and that 
n

(6.69)	 = fn. 
k=1 

Moreover, each interval for Fn+1 is a subinterval for Fn. Since f can varying 
by no more than 2−n on each of the intervals for Fn it follows that 

(6.70) |fn(x)| = |Fn+1(x) − Fn(x)| ≤ 2−n ∀ n > 1. 

Thus |fn| ≤ 2−n and so the series is absolutely summable. Moreover, it 
actually converges everywhere on [0, 1) and uniformly to f by (6.68). 

(3) Hence f is Lebesgue integrable. 
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(4) For some reason I did not ask you to check that � � 1 

(6.71)	 f = f(x)dx 
0 

where on the right is the Riemann integral. However this follows from the 
fact that 

(6.72)	 f = lim Fn 
n→∞ 

and the integral of the step function is between the Riemann upper and 
lower sums for the corresponding partition of [0, 1]. 




