18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

PRELIMINARY PROBLEMS FOR TEST 2 FOR 18.102, SPRING 2009 TEST ON THURSDAY 9 APR.

RICHARD MELROSE

1. Problem T2.1

Let *H* be a separable Hilbert space with an orthonormal basis $e_i, i \in \mathbb{N}$ with inner product (\cdot, \cdot) and norm $\|\cdot\|$:

- (1) Give an example of a sequence u_n which is not weakly convergent in H but is such that (u_n, e_j) converges for each j.
- (2) Show that if $||u_n||$ is bounded and (u_n, e_j) converges for each j then $u_n \rightharpoonup u$ converges weakly.

2. Problem T2.2

Let h_1 be the space of sequences

(1)
$$h_1 = \{c : \mathbb{N} \longrightarrow \mathbb{C}; ||c||_{h_1}^2 = \sum_{j=1}^\infty j^2 |c_j|^2 < \infty\}.$$

- (1) Show that h_1 is a Hilbert space.
- (2) Show that the unit ball in h_1 is *pre-compact* in the standard Hilbert space l_2 meaning its closure in l_2 is compact.

3. PROBLEM T2.3

- Recall the definition of a subset of R of measure zero in terms of convergence of series of step functions.
- (2) Show directly that a set of measure zero cannot contain a non-trivial open interval.
- (3) Show that the complement of a set of measure zero is dense in \mathbb{R} .

4. Problem T2.4

Suppose that $f \in L^2(0, 2\pi)$ is such that its Fourier coefficients

(1)
$$c_k = \int_{(0,2\pi)} f(x) e^{-ikx}$$

satisfy

(2)
$$\sum_{k} (k+1)^2 ||c_k||^2 < \infty.$$

Prove that there is a continuous function $\tilde{f}:[0,2\pi] \longrightarrow \mathbb{C}$ with $\tilde{f}(0) = \tilde{f}(2\pi)$ such that $[f] = [\tilde{f}]$ in $L^2(0,2\pi)$.

RICHARD MELROSE

5. Problem T2.5

Let h_1 be the Hilbert space in Problem T2.2. Show that any linear functional satisfying

(1) $T: h_1 \longrightarrow \mathbb{C}, \ |Tc| \le C ||c||_{h_1}$

for some constant C is of the form

(2)
$$Tc = \sum_{j=1}^{\infty} c_i d_i$$

for a fixed sequence d_i satisfying

(3)
$$\sum_{k=1}^{\infty} k^{-2} |d_k|^2 < \infty.$$

6. Problem T2.6
7. Problem T2.7
8. Problem T2.8

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 $\mathbf{2}$