MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

TEST 2 FOR 18.102: 9:35 - 10:55, 9 APRIL, 2009.

 WITH SOLUTIONSFor full marks, complete and precise answers should be given to each question but you are not required to prove major results.

1. Problem 1

Let H be a separable (partly because that is mostly what I have been talking about) Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Say that a sequence u_{n} in H converges weakly if $\left(u_{n}, v\right)$ is Cauchy in \mathbb{C} for each $v \in H$.
(1) Explain why the sequence $\left\|u_{n}\right\|_{H}$ is bounded.

Solution: Each u_{n} defines a continuous linear functional on H by

$$
\begin{equation*}
T_{n}(v)=\left(v, u_{n}\right),\left\|T_{n}\right\|=\left\|u_{n}\right\|, T_{n}: H \longrightarrow \mathbb{C} . \tag{A.1}
\end{equation*}
$$

For fixed v the sequence $T_{n}(v)$ is Cauchy, and hence bounded, in \mathbb{C} so by the 'Uniform Boundedness Principle' the $\left\|T_{n}\right\|$ are bounded, hence $\left\|u_{n}\right\|$ is bounded in \mathbb{R}.
(2) Show that there exists an element $u \in H$ such that $\left(u_{n}, v\right) \rightarrow(u, v)$ for each $v \in H$.

Solution: Since $\left(v, u_{n}\right)$ is Cauchy in \mathbb{C} for each fixed $v \in H$ it is convergent. Set

$$
T v=\lim _{n \rightarrow \infty}\left(v, u_{n}\right) \text { in } \mathbb{C} .
$$

This is a linear map, since

$$
\begin{equation*}
T\left(c_{1} v_{1}+c_{2} v_{2}\right)=\lim _{n \rightarrow \infty} c_{1}\left(v_{1}, u_{n}\right)+c_{2}\left(v_{2}, u\right)=c_{1} T v_{1}+c_{2} T v_{2} \tag{A.3}
\end{equation*}
$$

and is bounded since $|T v| \leq C\|v\|, C=\sup _{n}\left\|u_{n}\right\|$. Thus, by Riesz' theorem there exists $u \in H$ such that $T v=(v, u)$. Then, by definition of T,

$$
\begin{equation*}
\left(u_{n}, v\right) \rightarrow(u, v) \forall v \in H \tag{A.4}
\end{equation*}
$$

(3) If $e_{i}, i \in \mathbb{N}$, is an orthonormal sequence, give, with justification, an example of a sequence u_{n} which is not weakly convergent in H but is such that (u_{n}, e_{j}) converges for each j.

Solution: One such example is $u_{n}=n e_{n}$. Certainly (u_{n}, e_{i}) $=0$ for all $i>n$, so converges to 0 . However, $\left\|u_{n}\right\|$ is not bounded, so the sequence cannot be weakly convergent by the first part above.
(4) Show that if the e_{i} form an orthonormal basis, $\left\|u_{n}\right\|$ is bounded and $\left(u_{n}, e_{j}\right)$ converges for each j then u_{n} converges weakly.

Solution: By the assumption that (u_{n}, e_{j}) converges for all j it follows that $\left(u_{n}, v\right)$ converges as $n \rightarrow \infty$ for all v which is a finite linear combination of the e_{i}. For general $v \in H$ the convergence of the Fourier-Bessell series for v with respect to the orthonormal basis e_{j}

$$
v=\sum_{k}\left(v, e_{k}\right) e_{k}
$$

shows that there is a sequence $v_{k} \rightarrow v$ where each v_{k} is in the finite span of the e_{j}. Now, by Cauchy's inequality
$\left|\left(u_{n}, v\right)-\left(u_{m}, v\right)\right| \leq\left|\left(u_{n} v_{k}\right)-\left(u_{m}, v_{k}\right)\right|+\left|\left(u_{n}, v-v_{k}\right)\right|+\left|\left(u_{m}, v-v_{k}\right)\right|$.
Given $\epsilon>0$ the boundedness of $\left\|u_{n}\right\|$ means that the last two terms can be arranged to be each less than $\epsilon / 4$ by choosing k sufficiently large. Having chosen k the first term is less than $\epsilon / 4$ if $n, m>N$ by the fact that (u_{n}, v_{k}) converges as $n \rightarrow \infty$. Thus the sequence $\left(u_{n}, v\right)$ is Cauchy in \mathbb{C} and hence convergent.

2. Problem 2

Suppose that $f \in \mathcal{L}^{1}(0,2 \pi)$ is such that the constants

$$
c_{k}=\int_{(0,2 \pi)} f(x) e^{-i k x}, k \in \mathbb{Z}
$$

satisfy

$$
\sum_{k \in \mathbb{Z}}\left|c_{k}\right|^{2}<\infty
$$

Show that $f \in \mathcal{L}^{2}(0,2 \pi)$.
Solution. So, this was a good bit harder than I meant it to be - but still in principle solvable (even though no one quite got to the end).

First, (for half marks in fact!) we know that the c_{k} exists, since $f \in \mathcal{L}^{1}(0,2 \pi)$ and $e^{-i k x}$ is continuous so $f e^{-i k x} \in \mathcal{L}^{1}(0,2 \pi)$ and then the condition $\sum_{k}\left|c_{k}\right|^{2}<\infty$ implies that the Fourier series does converge in $L^{2}(0,2 \pi)$ so there is a function

$$
\begin{equation*}
g=\frac{1}{2 \pi} \sum_{k \in \mathbb{C}} c_{k} e^{i k x} \tag{A.1}
\end{equation*}
$$

Now, what we want to show is that $f=g$ a.e. since then $f \in \mathcal{L}^{2}(0,2 \pi)$.
Set $h=f-g \in \mathcal{L}^{1}(0,2 \pi)$ since $\mathcal{L}^{2}(0,2 \pi) \subset \mathcal{L}^{1}(0,2 \pi)$. It follows from (A.1) that f and g have the same Fourier coefficients, and hence that

$$
\begin{equation*}
\int_{(0,2 \pi)} h(x) e^{i k x}=0 \forall k \in \mathbb{Z} . \tag{A.2}
\end{equation*}
$$

So, we need to show that this implies that $h=0$ a.e. Now, we can recall from class that we showed (in the proof of the completeness of the Fourier basis of L^{2}) that these exponentials are dense, in the supremum norm, in continuous functions which vanish near the ends of the interval. Thus, by continuity of the integral we know that

$$
\begin{equation*}
\int_{(0,2 \pi)} h g=0 \tag{A.3}
\end{equation*}
$$

for all such continuous functions g. We also showed at some point that we can find such a sequence of continuous functions g_{n} to approximate the characteristic function of any interval χ_{I}. It is not true that $g_{n} \rightarrow \chi_{I}$ uniformly, but for any integrable function $h, h g_{n} \rightarrow h \chi_{I}$ in \mathcal{L}^{1}. So, the upshot of this is that we know a bit more than (A.3), namely we know that

$$
\begin{equation*}
\int_{(0,2 \pi)} h g=0 \forall \text { step functions } g \text {. } \tag{A.4}
\end{equation*}
$$

So, now the trick is to show that (A.4) implies that $h=0$ almost everywhere. Well, this would follow if we know that $\int_{(0,2 \pi)}|h|=0$, so let's aim for that. Here is the trick. Since $g \in \mathcal{L}^{1}$ we know that there is a sequence (the partial sums of an absolutely convergent series) of step functions h_{n} such that $h_{n} \rightarrow g$ both in $L^{1}(0,2 \pi)$ and almost everywhere and also $\left|h_{n}\right| \rightarrow|h|$ in both these senses. Now, consider the functions

$$
s_{n}(x)= \begin{cases}0 & \text { if } h_{n}(x)=0 \tag{A.5}\\ \frac{\overline{h_{n}(x)}}{\left|h_{n}(x)\right|} \text { otherwise. } & \end{cases}
$$

Clearly s_{n} is a sequence of step functions, bounded (in absolute value by 1 in fact) and such that $s_{n} h_{n}=\left|h_{n}\right|$. Now, write out the wonderful identity

$$
\begin{equation*}
|h(x)|=|h(x)|-\left|h_{n}(x)\right|+s_{n}(x)\left(h_{n}(x)-h(x)\right)+s_{n}(x) h(x) . \tag{A.6}
\end{equation*}
$$

Integrate this identity and then apply the triangle inequality to conclude that

$$
\begin{align*}
& \int_{(0,2 \pi)}|h|=\int_{(0,2 \pi)}\left(|h(x)|-\left|h_{n}(x)\right|+\int_{(0,2 \pi)} s_{n}(x)\left(h_{n}-h\right)\right. \tag{A.7}\\
& \leq \int_{(0,2 \pi)}\left(\| h(x)\left|-\left|h_{n}(x)\right|\right|+\int_{(0,2 \pi)}\left|h_{n}-h\right| \rightarrow 0 \text { as } n \rightarrow \infty .\right.
\end{align*}
$$

Here on the first line we have used (A.4) to see that the third term on the right in (A.6) integrates to zero. Then the fact that $\left|s_{n}\right| \leq 1$ and the convergence properties.

Thus in fact $h=0$ a.e. so indeed $f=g$ and $f \in \mathcal{L}^{2}(0,2 \pi)$. Piece of cake, right! Mia culpa.

3. Problem 3

Consider the two spaces of sequences

$$
h_{ \pm 2}=\left\{c: \mathbb{N} \longmapsto \mathbb{C} ; \sum_{j=1}^{\infty} j^{ \pm 4}\left|c_{j}\right|^{2}<\infty\right\}
$$

Show that both $h_{ \pm 2}$ are Hilbert spaces and that any linear functional satisfying

$$
T: h_{2} \longrightarrow \mathbb{C},|T c| \leq C\|c\|_{h_{2}}
$$

for some constant C is of the form

$$
T c=\sum_{j=1}^{\infty} c_{i} d_{i}
$$

where $d: \mathbb{N} \longrightarrow \mathbb{C}$ is an element of h_{-2}.
Solution: Many of you hammered this out by parallel with l^{2}. This is fine, but to prove that $h_{ \pm 2}$ are Hilbert spaces we can actually use l^{2} itself. Thus, consider the maps on complex sequences

$$
\begin{equation*}
\left(T^{ \pm} c\right)_{j}=c_{j} j^{ \pm 2} \tag{A.1}
\end{equation*}
$$

Without knowing anything about $h_{ \pm 2}$ this is a bijection between the sequences in $h_{ \pm 2}$ and those in l^{2} which takes the norm

$$
\begin{equation*}
\|c\|_{h_{ \pm 2}}=\|T c\|_{l^{2}} \tag{A.2}
\end{equation*}
$$

It is also a linear map, so it follows that $h_{ \pm}$are linear, and that they are indeed Hilbert spaces with $T^{ \pm}$isometric isomorphisms onto l^{2}; The inner products on $h_{ \pm 2}$ are then

$$
\begin{equation*}
(c, d)_{h_{ \pm 2}}=\sum_{j=1}^{\infty} j^{ \pm 4} c_{j} \overline{d_{j}} . \tag{A.3}
\end{equation*}
$$

Don't feel bad if you wrote it all out, it is good for you!
Now, once we know that h_{2} is a Hilbert space we can apply Riesz' theorem to see that any continuous linear functional $T: h_{2} \longrightarrow \mathbb{C},|T c| \leq C\|c\|_{h_{2}}$ is of the form

$$
\begin{equation*}
T c=\left(c, d^{\prime}\right)_{h_{2}}=\sum_{j=1}^{\infty} j^{4} c_{j} \overline{d_{j}^{\prime}}, d^{\prime} \in h_{2} . \tag{A.4}
\end{equation*}
$$

Now, if $d^{\prime} \in h_{2}$ then $d_{j}=j^{4} d_{j}^{\prime}$ defines a sequence in h_{-2}. Namely,

$$
\begin{equation*}
\sum_{j} j^{-4}\left|d_{j}\right|^{2}=\sum_{j} j^{4}\left|d_{j}^{\prime}\right|^{2}<\infty \tag{A.5}
\end{equation*}
$$

Inserting this in (A.4) we find that

$$
\begin{equation*}
T c=\sum_{j=1}^{\infty} c_{j} d_{j}, d \in h_{-2} \tag{A.6}
\end{equation*}
$$

