18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

PROBLEM SET 10 (AND LAST) FOR 18.102, SPRING 2009 DUE 11AM TUESDAY 5 MAY.

RICHARD MELROSE

By now you should have become reasonably comfortable with a separable Hilbert space such as l_2 . However, it is worthwhile checking once again that it is rather large – if you like, let me try to make you uncomfortable for one last time. An important result in this direction is Kuiper's theorem, which I will *not* ask you to prove¹. However, I want you to go through the closely related result sometimes known as *Eilenberg's swindle*. Perhaps you will appreciate the little bit of trickery. First some preliminary results. Note that everything below is a closed curve in the $x \in [0, 1]$ variable – you might want to identify this with a circle instead, I just did it the primitive way.

PROBLEM P10.1

Let H be a separable, infinite dimensional Hilbert space. Show that the direct sum of two copies of H is a Hilbert space with the norm

(P10.1)
$$H \oplus H \ni (u_1, u_2) \longmapsto (||u_1||_H^2 + ||u_2||_H^2)^{\frac{1}{2}}$$

either by constructing an isometric isomorphism

(P10.2)
$$T: H \longrightarrow H \oplus H$$
, 1-1 and onto, $||u||_H = ||Tu||_{H \oplus H}$

or otherwise. In any case, construct a map as in (P10.2).

PROBLEM P10.2

One can repeat the preceding construction any finite number of times. Show that it can be done 'countably often' in the sense that if H is a separable, infinite dimensional, Hilbert space then

(P10.3)
$$l_2(H) = \{ u : \mathbb{N} \longrightarrow H; \|u\|_{l_2(H)}^2 = \sum_i \|u_i\|_H^2 < \infty \}$$

has a Hilbert space structure and construct an explicit isometric isomorphism from $l_2(H)$ to H.

¹Kuiper's theorem says that for any (norm) continuous map, say from any compact metric space, $g: M \longrightarrow \operatorname{GL}(H)$ with values in the invertible operators on a separable infinite-dimensional Hilbert space there exists a continuous map, an homotopy, $h: M \times [0,1] \longrightarrow \operatorname{GL}(H)$ such that h(m,0) = g(m) and $h(m,1) = \operatorname{Id}_H$ for all $m \in M$.

RICHARD MELROSE

Problem P10.3

Recall, or perhaps learn about, the winding number of a closed curve with values in $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. We take as given the following fact:² If $Q = [0, 1]^N$ and $f : Q \longrightarrow \mathbb{C}^*$ is continuous then for each choice of $b \in \mathbb{C}$ satisfying $\exp(2\pi i b) = f(0)$, there exists a unique continuous function $F : Q \longrightarrow \mathbb{C}$ satisfying

(P10.4)
$$\exp(2\pi i F(q)) = f(q), \ \forall \ q \in Q \text{ and } F(0) = b.$$

Of course, you are free to change b to b + n for any $n \in \mathbb{Z}$ but then F changes to F + n, just shifting by the same integer.

(1) Now, suppose $c : [0,1] \longrightarrow \mathbb{C}^*$ is a closed curve – meaning it is continuous and c(1) = c(0). Let $C : [0,1] \longrightarrow \mathbb{C}$ be a choice of F for N = 1 and f = c. Show that the winding number of the closed curve c may be defined unambiguously as

(P10.5)
$$wn(c) = F(1) - F(0) \in \mathbb{Z}.$$

- (2) Show that wn(c) is constant under homotopy. That is if $c_i : [0,1] \longrightarrow \mathbb{C}^*$, i = 1, 2, are two closed curves so $c_i(1) = c_i(0)$, i = 1, 2, which are homotopic through closed curves in the sense that there exists $f : [0,1]^2 \longrightarrow \mathbb{C}^*$ continuous and such that $f(0, x) = c_1(x)$, $f(1, x) = c_2(x)$ for all $x \in [0,1]$ and f(y,0) = f(y,1) for all $y \in [0,1]$, then wn(c_1) = wn(c_2).
- (3) Consider the closed curve $L_n : [0, 1] \ni x \longmapsto e^{2\pi i x} \operatorname{Id}_{n \times n}$ of $n \times n$ matrices. Using the standard properties of the determinant, show that this curve is not homotopic to the identity through closed curves in the sense that there does not exist a continuous map $G : [0, 1]^2 \longrightarrow \operatorname{GL}(n)$, with values in the invertible $n \times n$ matrices, such that $G(0, x) = L_n(x)$, $G(1, x) \equiv \operatorname{Id}_{n \times n}$ for all $x \in [0, 1]$, G(y, 0) = G(y, 1) for all $y \in [0, 1]$.

Problem P10.4

Consider the closed curve corresponding to L_n above in the case of a separable but now infinite dimensional Hilbert space:

(P10.6)
$$L: [0,1] \ni x \longmapsto e^{2\pi i x} \operatorname{Id}_{H} \in \operatorname{GL}(H) \subset \mathcal{B}(H)$$

taking values in the invertible operators on H. Show that after identifying H with $H \oplus H$ as above, there is a continuous map

(P10.7)
$$M: [0,1]^2 \longrightarrow \operatorname{GL}(H \oplus H)$$

with values in the invertible operators and satisfying (P10.8)

 $M(0, x) = L(x), M(1, x)(u_1, u_2) = (e^{4\pi i x}u_1, u_2), M(y, 0) = M(y, 1), \forall x, y \in [0, 1].$ Hint: So, think of $H \oplus H$ as being 2-vectors (u_1, u_2) with entries in H. This allows one to think of 'rotation' between the two factors. Indeed, show that

(P10.9)
$$U(y)(u_1, u_2) = (\cos(\pi y/2)u_1 + \sin(\pi y/2)u_2, -\sin(\pi y/2)u_1 + \cos(\pi y/2)u_2)$$

defines a continuous map $[0,1] \ni y \longmapsto U(y) \in \operatorname{GL}(H \oplus H)$ such that $U(0) = \operatorname{Id}$, $U(1)(u_1, u_2) = (u_2, -u_1)$. Now, consider the 2-parameter family of maps

(P10.10)
$$U^{-1}(y)V_2(x)U(y)V_1(x)$$

 $^{^{2}}$ Of course, you are free to give a proof – it is not hard.

PROBLEMS 10

where $V_1(x)$ and $V_2(x)$ are defined on $H \oplus H$ as multiplication by $\exp(2\pi i x)$ on the first and the second component respectively, leaving the other fixed.

PROBLEM P10.5

Using a rotation similar to the one in the preceeding problem (or otherwise) show that there is a continuous map

(P10.11) $G: [0,1]^2 \longrightarrow \operatorname{GL}(H \oplus H)$

such that

(P10.12)
$$G(0,x)(u_1,u_2) = (e^{2\pi i x} u_1, e^{-2\pi i x} u_2),$$

 $G(1,x)(u_1,u_2) = (u_1,u_2), \ G(y,0) = G(y,1) \ \forall \ x,y \in [0,1].$

Problem P10.6

Now, think about combining the various constructions above in the following way. Show that on $l_2(H)$ there is an homotopy like (P10.11), $\tilde{G} : [0,1]^2 \longrightarrow \mathrm{GL}(l_2(H))$, (very like in fact) such that

(P10.13)
$$\tilde{G}(0,x) \{u_k\}_{k=1}^{\infty} = \left\{ \exp((-1)^k 2\pi i x) u_k \right\}_{k=1}^{\infty},$$

 $\tilde{G}(1,x) = \operatorname{Id}, \ \tilde{G}(y,0) = \tilde{G}(y,1) \ \forall \ x, y \in [0,1].$

PROBLEM P10.7: EILENBERG'S SWINDLE

For an infinite dimensional separable Hilbert space, construct an homotopy – meaning a continuous map $G : [0,1]^2 \longrightarrow \operatorname{GL}(H)$ – with G(0,x) = L(x) in (P10.6) and $G(1,x) = \operatorname{Id}$ and of course G(y,0) = G(y,1) for all $x, y \in [0,1]$.

Hint: Just put things together – of course you can rescale the interval at the end to make it all happen over [0, 1]. First 'divide H into 2 copies of itself' and deform from L to M(1, x) in (P10.8). Now, 'divide the second H up into $l_2(H)$ ' and apply an argument just like the preceding problem to turn the identity on this factor into alternating terms multiplying by $\exp(\pm 4\pi i x)$ – starting with –. Now, you are on $H \oplus l_2(H)$, 'renumbering' allows you to regard this as $l_2(H)$ again and when you do so your curve has become alternate multiplication by $\exp(\pm 4\pi i x)$ (with + first). Finally then, apply the preceding problem again, to deform to the identity (always of course through closed curves). Presto, Eilenberg's swindle!

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY