MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

PROBLEM SET 10 (AND LAST) FOR 18.102, SPRING 2009 DUE 11AM TUESDAY 5 MAY.

RICHARD MELROSE

By now you should have become reasonably comfortable with a separable Hilbert space such as l_{2}. However, it is worthwhile checking once again that it is rather large - if you like, let me try to make you uncomfortable for one last time. An important result in this direction is Kuiper's theorem, which I will not ask you to prove ${ }^{1}$. However, I want you to go through the closely related result sometimes known as Eilenberg's swindle. Perhaps you will appreciate the little bit of trickery. First some preliminary results. Note that everything below is a closed curve in the $x \in[0,1]$ variable - you might want to identify this with a circle instead, I just did it the primitive way.

Problem P10.1

Let H be a separable, infinite dimensional Hilbert space. Show that the direct sum of two copies of H is a Hilbert space with the norm

$$
\begin{equation*}
H \oplus H \ni\left(u_{1}, u_{2}\right) \longmapsto\left(\left\|u_{1}\right\|_{H}^{2}+\left\|u_{2}\right\|_{H}^{2}\right)^{\frac{1}{2}} \tag{P10.1}
\end{equation*}
$$

either by constructing an isometric isomorphism

$$
\begin{equation*}
T: H \longrightarrow H \oplus H, 1-1 \text { and onto, }\|u\|_{H}=\|T u\|_{H \oplus H} \tag{P10.2}
\end{equation*}
$$

or otherwise. In any case, construct a map as in (P10.2).

Problem P10.2

One can repeat the preceding construction any finite number of times. Show that it can be done 'countably often' in the sense that if H is a separable, infinite dimensional, Hilbert space then

$$
\begin{equation*}
l_{2}(H)=\left\{u: \mathbb{N} \longrightarrow H ;\|u\|_{l_{2}(H)}^{2}=\sum_{i}\left\|u_{i}\right\|_{H}^{2}<\infty\right\} \tag{P10.3}
\end{equation*}
$$

has a Hilbert space structure and construct an explicit isometric isomorphism from $l_{2}(H)$ to H.

[^0]
Problem P10.3

Recall, or perhaps learn about, the winding number of a closed curve with values in $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. We take as given the following fact: ${ }^{2}$ If $Q=[0,1]^{N}$ and $f: Q \longrightarrow \mathbb{C}^{*}$ is continuous then for each choice of $b \in \mathbb{C}$ satisfying $\exp (2 \pi i b)=f(0)$, there exists a unique continuous function $F: Q \longrightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\exp (2 \pi i F(q))=f(q), \forall q \in Q \text { and } F(0)=b \tag{P10.4}
\end{equation*}
$$

Of course, you are free to change b to $b+n$ for any $n \in \mathbb{Z}$ but then F changes to $F+n$, just shifting by the same integer.
(1) Now, suppose $c:[0,1] \longrightarrow \mathbb{C}^{*}$ is a closed curve - meaning it is continuous and $c(1)=c(0)$. Let $C:[0,1] \longrightarrow \mathbb{C}$ be a choice of F for $N=1$ and $f=c$. Show that the winding number of the closed curve c may be defined unambiguously as

$$
\begin{equation*}
\mathrm{wn}(c)=F(1)-F(0) \in \mathbb{Z} \tag{P10.5}
\end{equation*}
$$

(2) Show that $\mathrm{wn}(c)$ is constant under homotopy. That is if $c_{i}:[0,1] \longrightarrow \mathbb{C}^{*}$, $i=1,2$, are two closed curves so $c_{i}(1)=c_{i}(0), i=1,2$, which are homotopic through closed curves in the sense that there exists $f:[0,1]^{2} \longrightarrow \mathbb{C}^{*}$ continuous and such that $f(0, x)=c_{1}(x), f(1, x)=c_{2}(x)$ for all $x \in[0,1]$ and $f(y, 0)=f(y, 1)$ for all $y \in[0,1]$, then $\operatorname{wn}\left(c_{1}\right)=\operatorname{wn}\left(c_{2}\right)$.
(3) Consider the closed curve $L_{n}:[0,1] \ni x \longmapsto e^{2 \pi i x} \operatorname{Id}_{n \times n}$ of $n \times n$ matrices. Using the standard properties of the determinant, show that this curve is not homotopic to the identity through closed curves in the sense that there does not exist a continuous map $G:[0,1]^{2} \longrightarrow \mathrm{GL}(n)$, with values in the invertible $n \times n$ matrices, such that $G(0, x)=L_{n}(x), G(1, x) \equiv \operatorname{Id}_{n \times n}$ for all $x \in[0,1], G(y, 0)=G(y, 1)$ for all $y \in[0,1]$.

Problem P10.4

Consider the closed curve corresponding to L_{n} above in the case of a separable but now infinite dimensional Hilbert space:

$$
\begin{equation*}
L:[0,1] \ni x \longmapsto e^{2 \pi i x} \operatorname{Id}_{H} \in \mathrm{GL}(H) \subset \mathcal{B}(H) \tag{P10.6}
\end{equation*}
$$

taking values in the invertible operators on H. Show that after identifying H with $H \oplus H$ as above, there is a continuous map

$$
\begin{equation*}
M:[0,1]^{2} \longrightarrow \operatorname{GL}(H \oplus H) \tag{P10.7}
\end{equation*}
$$

with values in the invertible operators and satisfying
(P10.8)
$M(0, x)=L(x), M(1, x)\left(u_{1}, u_{2}\right)=\left(e^{4 \pi i x} u_{1}, u_{2}\right), M(y, 0)=M(y, 1), \forall x, y \in[0,1]$.
Hint: So, think of $H \oplus H$ as being 2 -vectors $\left(u_{1}, u_{2}\right)$ with entries in H. This allows one to think of 'rotation' between the two factors. Indeed, show that
$(\mathrm{P} 10.9) U(y)\left(u_{1}, u_{2}\right)=\left(\cos (\pi y / 2) u_{1}+\sin (\pi y / 2) u_{2},-\sin (\pi y / 2) u_{1}+\cos (\pi y / 2) u_{2}\right)$
defines a continuous map $[0,1] \ni y \longmapsto U(y) \in \mathrm{GL}(H \oplus H)$ such that $U(0)=\mathrm{Id}$, $U(1)\left(u_{1}, u_{2}\right)=\left(u_{2},-u_{1}\right)$. Now, consider the 2-parameter family of maps

$$
\begin{equation*}
U^{-1}(y) V_{2}(x) U(y) V_{1}(x) \tag{P10.10}
\end{equation*}
$$

[^1]where $V_{1}(x)$ and $V_{2}(x)$ are defined on $H \oplus H$ as multiplication by $\exp (2 \pi i x)$ on the first and the second component respectively, leaving the other fixed.

Problem P10.5

Using a rotation similar to the one in the preceeding problem (or otherwise) show that there is a continuous map

$$
\begin{equation*}
G:[0,1]^{2} \longrightarrow \mathrm{GL}(H \oplus H) \tag{P10.11}
\end{equation*}
$$

such that
(P10.12) $\quad G(0, x)\left(u_{1}, u_{2}\right)=\left(e^{2 \pi i x} u_{1}, e^{-2 \pi i x} u_{2}\right)$,

$$
G(1, x)\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}\right), G(y, 0)=G(y, 1) \forall x, y \in[0,1] .
$$

Problem P10.6

Now, think about combining the various constructions above in the following way. Show that on $l_{2}(H)$ there is an homotopy like (P10.11), $\tilde{G}:[0,1]^{2} \longrightarrow \operatorname{GL}\left(l_{2}(H)\right)$, (very like in fact) such that
(P10.13) $\tilde{G}(0, x)\left\{u_{k}\right\}_{k=1}^{\infty}=\left\{\exp \left((-1)^{k} 2 \pi i x\right) u_{k}\right\}_{k=1}^{\infty}$,

$$
\tilde{G}(1, x)=\operatorname{Id}, \tilde{G}(y, 0)=\tilde{G}(y, 1) \forall x, y \in[0,1] .
$$

Problem P10.7: Eilenberg's swindle

For an infinite dimenisonal separable Hilbert space, construct an homotopy meaning a continuous map $G:[0,1]^{2} \longrightarrow \mathrm{GL}(H)$ - with $G(0, x)=L(x)$ in (P10.6) and $G(1, x)=\operatorname{Id}$ and of course $G(y, 0)=G(y, 1)$ for all $x, y \in[0,1]$.

Hint: Just put things together - of course you can rescale the interval at the end to make it all happen over $[0,1]$. First 'divide H into 2 copies of itself' and deform from L to $M(1, x)$ in (P10.8). Now, 'divide the second H up into $l_{2}(H)$ ' and apply an argument just like the preceding problem to turn the identity on this factor into alternating terms multiplying by $\exp (\pm 4 \pi i x)$ - starting with - . Now, you are on $H \oplus l_{2}(H)$, 'renumbering' allows you to regard this as $l_{2}(H)$ again and when you do so your curve has become alternate multiplication by $\exp (\pm 4 \pi i x)$ (with + first). Finally then, apply the preceding problem again, to deform to the identity (always of course through closed curves). Presto, Eilenberg's swindle!

[^0]: ${ }^{1}$ Kuiper's theorem says that for any (norm) continuous map, say from any compact metric space, $g: M \longrightarrow \mathrm{GL}(H)$ with values in the invertible operators on a separable infinite-dimensional Hilbert space there exists a continuous map, an homotopy, $h: M \times[0,1] \longrightarrow \mathrm{GL}(H)$ such that $h(m, 0)=g(m)$ and $h(m, 1)=\operatorname{Id}_{H}$ for all $m \in M$.

[^1]: ${ }^{2}$ Of course, you are free to give a proof - it is not hard.

