MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problems for 18.112 Mid 2 (Open Book)

Nov. 22, 2006

1. (15') Evaluate

$$
\int_{\gamma} \frac{d z}{e^{z}-1}
$$

where γ is the circle $|z|=9$.
2. (30') Let $f(z)$ be analytic in the whole plane and assume that $\frac{\operatorname{Re} f(z)}{z} \rightarrow 0$ as $z \rightarrow \infty$. Prove: f is a constant.
(Hint: Use formula (66) valid for $|z|<R$:

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{\zeta+z}{\zeta-z} u(\zeta) \frac{d \zeta}{\zeta}+i C, \quad u=\operatorname{Re}(x)
$$

and estimate $f^{\prime}(z)$ carefully for $z<\frac{R}{2}$ (Liouville).)
3. (25') If $f(z)$ is analytic for $|z|<1$ and

$$
|f(z)| \leq \frac{1}{1-|z|}
$$

find the best estimate of $f^{(n)}(0)$ that Cauchy's formula will yield.
(Hint: Use Cauchy's formula in each $|z| \leq r,(r<1)$.)
4. (30') How many roots does the equation

$$
z^{7}-2 z^{5}+6 z^{3}-z+1=0
$$

have in the disk $|z|<1$? How many roots are inside $|z|=2$? (Hint: Look for the biggest term when $|z|=1$, use Rouche.)

