MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 Mid 1

Problem 1.

Solution:

$$
\begin{aligned}
z^{3}=8 e^{-i \pi / 2} & \Longrightarrow z=2 e^{-i\left(\frac{\pi}{6}+\frac{2 n \pi}{3}\right)}, 0 \leq n \leq 2 \\
& \Longrightarrow z=2 i \text { or } z=\sqrt{3}-i \text { or } z=-\sqrt{3}-i .
\end{aligned}
$$

Problem 2.

Method 1.

$$
\begin{aligned}
\int_{|z-1|=\frac{1}{2}} \frac{d z}{(1-z)^{3}} & =\int_{0}^{2 \pi} \frac{i e^{i} t / 2}{\left(-e^{i t} / 2\right)^{3}} d t \\
& =\frac{-i}{2} \cdot 8 \int_{0}^{2 \pi} e^{-i \cdot 2 t} d t \\
& =-\left.4 i \frac{e^{-2 i t}}{-2 i}\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

Method 2. Let $f(z) \equiv 1$. By (24) on Page 120, we get

$$
0=f^{\prime \prime}(1)=\frac{2!}{2 \pi i} \int_{|z-1|=\frac{1}{2}} \frac{d z}{(z-1)^{3}}
$$

Problem 3.

Solution: 1) $\int_{|z|=1} \frac{e^{z}+z}{z-2} d z=0$, since $2 \notin\{z:|z|<1\}$.
2) $\int_{|z|=3} \frac{e^{z}+z}{z-2} d z=2 \pi i\left(e^{2}+2\right)$, since $n(\gamma, 2)=1$. (Theorem 6 on P119.)

Problem 4.

Solution: Let

$$
g(z)=f\left(\frac{1}{z}\right), \forall z \neq 0
$$

then g is analytic on $\mathbb{C} \backslash\{0\}$, and the singularity at 0 is removable or is pole of order h.

If the singularity of g at 0 is removable, then $\lim _{z \rightarrow 0} g(z)$ exists and is finite, i.e. $\lim _{z \rightarrow \infty} f(z)$ exists and is finite. Thus f is bounded on \mathbb{C}. Since f is analytic and bounded in the whole plane, it is a constant.

If 0 is pole of order h, then

$$
g(z)=B_{h} z^{-h}+B_{h-1} z^{-h+1}+\cdots+B_{1} z^{-1}+\phi(z),
$$

where $\phi(z)$ is analytic on \mathbb{C}. Since f is continuous (analytic) at $0, \lim _{z \rightarrow \infty} g(z)$ exists and is finite. Thus $\lim _{z \rightarrow \infty} \phi(z)$ exists and is finite. So $\phi(z)$ is bounded in the whole plane, and thus $\phi(z)=B_{0}$ is constant. So

$$
f(z)=g\left(\frac{1}{z}\right)=B_{h} z^{h}+B_{h-1} z^{h-1}+\cdots+B_{1} z+B_{0}
$$

is polynomial.

Problem 5.

Method 1. Take

$$
C:|z|=R, \text { where } R>100 .
$$

For any $m>n$, we have

$$
\begin{aligned}
\left|f^{(m)}(0)\right| & =\left|\frac{m!}{2 \pi i} \int_{C} \frac{f(\xi) d \xi}{\xi^{m+1}}\right| \\
& \leq \frac{m!}{2 \pi}\left|\int_{C} \xi^{n-m-1} d \xi\right| \\
& =\frac{m!}{2 \pi} \frac{R^{n-m}}{n-m} \longrightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Thus $f^{(m)}(0)=0$ for any $m>n$. By the Taylor expansion,

$$
\begin{aligned}
f(z) & =f(0)+\frac{f^{\prime}(0)}{1!} z+\cdots+\frac{f^{n}(0)}{n!} z^{n}+\frac{f^{n+1}(0)}{(n+1)!} z^{n+1}+\cdots \\
& =f(0)+\frac{f^{\prime}(0)}{1!} z+\cdots+\frac{f^{n}(0)}{n!} z^{n}
\end{aligned}
$$

is polynomial.
Method 2. By $|f(z)|<|z|^{n}$, we know

$$
\lim _{z \rightarrow 0} z^{n+1} f(1 / z)=0
$$

i.e. f has a nonessential singularity at ∞. By last problem, f is polynomial.

