MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 Mid 2

Problem 1.

Solution: The function

$$
f(z)=\frac{1}{e^{z}-1}
$$

is analytic in $\mathbb{C}-\{2 n \pi i, n \in \mathbb{Z}\}$, and has simple pole at points $z=2 n \pi i$. Thus there are three poles in the region bounded by γ, which correspond to $n=0, \pm 1$. Moreover, at each pole z, the residue equals to

$$
\frac{1}{\left(e^{z}-1\right)^{\prime}}=\frac{1}{e^{z}}=1
$$

By residue theorem,

$$
\int_{\gamma} \frac{1}{e^{z}-1} d z=2 \pi i(1+1+1)=6 \pi i
$$

Problem 2.

Solution: Let

$$
u(z)=\operatorname{Re} f(z)
$$

then by formula (66), there exists constant C such that for any $|z|<R$,

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{\zeta+z}{\zeta-z} u(\zeta) \frac{d \zeta}{\zeta}+i C
$$

Thus

$$
f^{\prime}(z)=\frac{1}{\pi i} \int_{|\zeta|=R} \frac{u(\zeta)}{(\zeta-z)^{2}} d \zeta
$$

for any $|z|<R$.
Now for any z, take $R>2|z|$ large enough such that

$$
\frac{|u(\zeta)|}{|\zeta|}<1
$$

for any $|\zeta| \geq R$. Then

$$
\left|f^{\prime}(z)\right| \leq \frac{1}{\pi} \int_{|\zeta|=R} \frac{|\zeta|}{|\zeta-z|^{2}}|d \zeta| \leq \frac{1}{\pi} \cdot 2 \pi R \cdot \frac{R}{(R / 2)^{2}}=8
$$

Thus $f^{\prime}(z)$ is bounded analytic function on \mathbb{C}. By Liouville's theorem, $f^{\prime}(z)$ is constant, so $f(z)=a z+b$ is linear. By condition

$$
\frac{u(z)}{z} \rightarrow 0
$$

we see that $a=0$, which implies that f is a constant.
N.B. You can also prove that

$$
\frac{\operatorname{Im} f(z)}{z} \rightarrow 0
$$

thus

$$
\frac{f(z)}{z} \rightarrow 0 \text { as } z \rightarrow \infty .
$$

So by Problem 4 or Problem 5 in Mid 1, f is a polynomial, and thus f is a constant.

Problem 3.

Solution: By Cauchy's formula,

$$
\begin{aligned}
\left|f^{(n)}(0)\right| & \leq \frac{n!}{2 \pi} \int_{|\zeta|=r} \frac{|f(\zeta)|}{\left|\zeta^{n+1}\right|}|d \zeta| \\
& \leq \frac{n!}{2 \pi} \cdot 2 \pi r \cdot \frac{1}{1-r} \frac{1}{r^{n+1}} \\
& =\frac{n!}{(1-r) r^{n}}
\end{aligned}
$$

for $0<r<1$. On the other hand,

$$
\begin{aligned}
\frac{1}{(1-r) r^{n}} & =\frac{1}{n^{n}} \frac{1}{(1-r)(r / n)^{n}} \\
& \geq \frac{1}{n^{n}}\left(\frac{n+1}{1-r+\frac{r}{n}+\cdots+\frac{r}{n}}\right)^{n+1} \\
& =\frac{(n+1)^{n+1}}{n^{n}}
\end{aligned}
$$

by Algebraic-Geometric Mean Value inequality, with equality holds if and only if

$$
1-r=\frac{r}{n},
$$

i.e.

$$
r=\frac{n}{n+1} .
$$

So the best estimate of $f^{(n)}(0)$ that Cauchy's formula will yield is

$$
\left|f^{(n)}(0)\right| \leq \frac{n!(n+1)^{(n+1)}}{n^{n}}=(n+1)!\left(1+\frac{1}{n}\right)^{n} .
$$

N.B. You can also get the minimal value of

$$
\frac{1}{(1-r) r^{n}}
$$

by computing derivatives.

Problem 4.

Solution: Let

$$
\begin{aligned}
& f(z)=z^{7}-2 z^{5}+6 z^{3}-z+1, \\
& g(z)=6 z^{3} \\
& h(z)=z^{7}
\end{aligned}
$$

Then we have

$$
|f(z)-g(z)|=\left|z^{7}-2 z^{5}-z+1\right| \leq 5<6=|g(z)|
$$

on the curve $|z|=1$, and

$$
|f(z)-h(z)|=\left|-2 z^{5}+6 z^{3}-z+1\right| \leq 115<128=|h(z)|
$$

on the curve $|z|=2$. Thus by Rouche's theorem, f has 3 roots (as g) in $|z|<1$ and 7 roots (as h) in $|z|<2$.
N.B. You can also choose $g(z)$ to be $6 z^{3}+1$ or $6 z^{3}-z$, or choose $h(z)=z^{7}+1$ etc.

