MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problems for 18.112 Final Examination (Open Book)

Dec. 20, 2006

1. (20') Let a, b, c be complex numbers satisfying

$$
\frac{b-a}{c-a}=\frac{a-c}{b-c} .
$$

Considering the triangle with vertices a, b, c. Prove

$$
|b-a|=|c-a|=|b-c| .
$$

2. (15') Find where the series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{1+z^{2 n}}
$$

converges and determine where the sum $f(z)$ is holomorphic. Give reasons for your answer.
3. (15') Evaluate

$$
\int_{\gamma} \frac{|z| e^{z}}{z^{2}} d z
$$

where γ is the circle with radius 2 and center 0 .
4. (15') Prove that if $f(z)$ has a pole of order h at z_{0}, then

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{1}{(h-1)!}\left\{\frac{d^{h-1}}{d z^{h-1}}\left(z-z_{0}\right)^{h} f(z)\right\}_{z=z_{0}} .
$$

5. (20') Using the geometric series, find Laurent expansions for

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

valid in $|z|<1$ and valid in $|z|>2$.
6. (15') Let $f(z)$ be analytic in $|z| \leq 1$. Suppose that $|f(z)|<1$ if $|z|=1$. Show that the equation

$$
f(z)-z=0
$$

has exactly one solution inside $|z|=1$.

