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4.3 Smoothing operators 

Let X be an n-dimensional manifold equipped with a smooth non-vanishing measure, dx. Given K 
C∞(X ×X), one can define an operator 

∈ 

TK : C∞(X) → C∞(X) 

by setting 

TK f (x) = K(x, y)f (y) dy . (4.3.1) 

Operators of this type are called smoothing operators. The definition (4.3.1) involves the cho ice of the 
measure, dx, however, it’s easy to see that the notion of “smoothing operator” doesn’t depend on this choice. 
Any other smooth measure will be of the form, ϕ(x) dx, where ϕ is an everywhere-positive C∞ function, and 
if we replace dy by ϕ(y) dy in (4.3.1) we get the smoothing operator, TK1 

, where K1(x, y) = K(x, y)ϕ(y). 
A couple of elementary remarks about smoothing operators: 
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1. Let L(x, y) = K(y, x). Then TL is the transpose of TK . For f and g in C∞
0 (X), 

TK f, g = g(x) K(x, y)f(y) dy dx 

= f(y)(TLg)(y) dy = f, TLg . 

2. If X is compact, the composition of two smoothing operators is a smoothing operator. Explicitly: 

TK1 
TK2 

= TK3 

where 

K3(x, y) = K1(x, z)K2(z, y) dz . 

We will now give a rough outline of how our proof of Theorem 4.2 will go. Let I : C∞(X) → C∞(X) be 
the identity operator. We will prove in the next few sections the following two results. 

Theorem. The elliptic operator, P is right-invertible modulo smoothing operators, i.e., there exists an 
operator, Q : C∞(X) → C∞(X) and a smoothing operator, TK , such that 

PQ = I − TK (4.3.2) 

and 

Theorem. The Fredholm theorem is true for the operator, I − TK , i.e., the kernel of this operator is finite 
dimensional, and f ∈ C∞(X) is in the image of this operator if and only if it is orthogonal to kernel of the 

operator, I − TL, where L(x, y) = K(y, x). 

Remark. In particular since TK is the transpose of TL, the kernel of I − TL is finite dimensional. 
The proof of Theorem 4.3 is very easy, and in fact we’ll leave it as a series of exercises. (See ??.) The §

proof of Theorem 4.3, however, is a lot harder and will involve the theory of pseudodifferential operators on 
the n-torus, T n . 

We will conclude this section by showing how to deduce Theorem 4.2 from Theorems 4.3 and 4.3. Let 
V be the kernel of I − TL. By Theorem 4.3, V is a finite dimensional space, so every element, f , of C∞(X) 
can be written uniquely as a sum 

f = g + h (4.3.3) 

where g is in V and h is orthogonal to V . Indeed, if f1, . . . , fm is an orthonormal basis of V with respect to 
the L2 norm 

g = 
�

f, fi fi 

and h = f − g. Now let U be the orthocomplement of V ∩ Image P in V . 

Proposition. Every f ∈ C∞(M) can be written uniquely as a sum 

f = f1 + f2 (4.3.4) 

where f1 ∈ U , f2 ∈ Image P and f1 is orthogonal to f2. 

Proof. By Theorem 4.3 
Image P ⊂ Image (I − TK ) . (4.3.5) 

Let g and h be the “g” and “h” in (4.3.3). Then since h is orthogonal to V , it is in Image (I − TK ) by 
Theorem 4.3 and hence in Image P by (4.3.5). Now let g = f1 + g2 where f1 is in U and g2 is in the 
orthocomplement of U in V (i.e., in V ∩ Image P ). Then 

f = f1 + f2 

where f2 = g2 + h is in Image P . Since f1 is orthogonal to g2 and h it is orthogonal to f2. 

Next we’ll show that 
U = Ker P t . (4.3.6) 

Indeed f ∈ U ⇔ f ⊥ Image P f, Pu = 0 for all u ⇔ �P tf, u� = 0 for all u ↔ P tf = 0. ⇔ � �
This proves that all the assertions of Theorem 4.3 are true except for the finite dimensionality of Ker P . 

However, (4.3.6) tells us that Ker P t is finite dimensional and so, with P and P t interchanged, Ker P is 
finite dimensional. 
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4.4 Fourier analysis on the n-torus 

In these notes the “n-torus” will be, by definition, the manifold: T n = Rn/2πZn . A C∞ function, f , on T n 

can be viewed as a C∞ function on Rn which is periodic of period 2π: For all k ∈ Zn 

f(x+ 2πk) = f(x) . (4.4.1) 

Basic examples of such functions are the functions 

ikx e , k ∈ Z
n , kx = k1x1 + knxn .· · ·

Let P = C∞(T n) = functions on Rn satisfying (4.4.1), and let Q ⊆ Rn be the open cube C∞ 

0 < xi < 2π . i = 1, . . . , n . 

Given f ∈ P we’ll define � � 
1 
�n � 

f dx = f dx 
T n 2π Q 

and given f, g ∈ P we’ll define their L2 inner product by 

f, g = fg dx . � �
T n 

I’ll leave you to check that 
ikx iℓxe , e 

is zero if k = ℓ and 1 if k = ℓ. Given f ∈ P we’ll define the kth Fourier coefficient of f to be the L2 inner 
product 

�

ck = ck (f) = f, e ikx� = 
T n 

fe−ikx dx . 

The Fourier series of f is the formal sum 

ikx 
� 

ck e , k ∈ Z
n . (4.4.2) 

In this section I’ll review (very quickly) standard facts about Fourier series.

It’s clear that f ∈ P ⇒ Dαf ∈ P for all multi-indices, α.


Proposition. If g = Sαf 

ck (g) = kα ck (f) . 

Proof. � 
Dαfe−ikx dx 

� 
= fDαeikx dx . 

T n T n 

Now check 
ikx ikx Dα e = kα e . 

Corollary. For every integer r > 0 there exists a constant Cr such that 

ck (f) ≤ Cr (1 + |k|2)−r/2 . (4.4.3) | |
Proof. Clearly 

1 
� 

ck (f)| ≤
(2π)n 

f dx = C0 .|
T n 

| |

Moreover, by the result above, with g = Dαf 

kα CK (f) = CK (g) ≤ Cα| | | |
and from this it’s easy to deduce an estimate of the form (4.4.3). 
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Proposition. The Fourier series (4.4.2) converges and this sum is a C∞ function. 

To prove this we’ll need 

Lemma. If m > n the sum �m/2
1�� 

, k ∈ Z
n , (4.4.4) 

1 + k 2| |
converges. 

Proof. By the “integral test” it suffices to show that the integral 

�m/2� � 
1 

dx 
Rn 1 + x 2| |

converges. However in polar coordinates this integral is equal to 

�m/2 
γn−1 

� 

0 

∞ � 

1 +

1 

|r|2 r n−1 dr 

(γn−1 being the volume of the unit n− 1 sphere) and this converges if m > n. 

Combining this lemma with the estimate (4.4.3) one sees that (4.4.2) converges absolutely, i.e., 

�
ck (f)| | 

converges, and hence (4.4.2) converges uniformly to a continuous limit. Moreover if we differentiate (4.4.2) 
term by term we get 

ikx ikx Dα 
�

ck e = 
�

kα ck e 

and by the estimate (4.4.3) this converges absolutely and uniformly. Thus the sum (4.4.2) exists, and so do 
its derivatives of all orders. 

Let’s now prove the fundamental theorem in this subject, the identity 

ikx 
�

ck (f)e = f(x) . (4.4.5) 

Proof. Let A ⊆ P be the algebra of trigonometric polynomials: 

ikx f ∈ A ⇔ f = 
� 

ak e 
k ≤m| |

for some m. 

Claim. This is an algebra of continuous functions on T n having the Stone–Weierstrass properties 

1) Reality: If f ∈ A ., f ∈ A

2) 1 ∈ A.


3) If x and y are points on T n with x = y, there exists an f ∈ A with f(x) = f(y). 

e−ikx Proof. Item 2 is obvious and item 1 follows from the fact that eikx = . Finally to verify item 3 we note 
ixnthat the finite set, {eix1 , . . . , e }, already separates points. Indeed, the map 

T n → (S1)n 

mapping x to eix1 , . . . , eixn is bijective. 
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Therefore by the Stone–Weierstrass theorem A is dense in C0(T n). Now let f ∈ P and let g be the 
Fourier series (4.4.2). Is f equal to g? Let h = f − g. Then 

ikx = g, e �h, e ikx � �f, e ikx � − � � 
= ck(f) − ck (f) = 0 

so h, eikx = 0 for all eikx , hence h, ϕ = 0 for all ϕ ∈ A. Therefore since A is dense in P , h, ϕ = 0 for 
all 

�
ϕ ∈ P .

�
In particular, h, h = 0, so h

�
= 0 . 

� �

I’ll conclude this review of the Fourier analysis on the n-torus by making a few comments about the L2 

theory. 
The space, A, is dense in the space of continuous functions on T n and this space is dense in the space of 

L2 functions on T n . Hence if h ∈ L2(T n) and h, eikx = 0 for all k the same argument as that I sketched 
above shows that h = 0. Thus 

ikx e , k ∈ Z
n{ } 

is an orthonormal basis of L2(T n). In particular, for every f ∈ L2(T n) let 

ck (f) = f, e ikx . 

Then the Fourier series of f 
ikx 

� 
ck (f)e 

converges in the L2 sense to f and one has the Plancherel formula 

2f, f = 
� 

ck (f) , k ∈ Z
n . 




