Lecture 24

Proposition. $L^t = *^{-1}L*$

Proposition. $u \in V$ then $[L_u^t, L] = -L_u$.

Proof. Proof omitted.

Let (X^{2n}, ω) be a compact symplectic manifold. Let $x \in X$ and $V = T_x^*$. Notice

- (a) From ω_x we get a symplectic bilinear form on T_x .
- (b) From this form we get an identification $T_x \to T_x^*$.
- (c) Hence from 1, 2 we get a symplectic bilinear from B_x on V.
- (d) From B_x we get a *-operator

$$*_x : \Lambda^p(T_x^*) \to \Lambda^{2n-p}(T_x^*)$$

(e) This gives us a *-operator on forms

$$*:\Omega^p(X)\to \Omega^{2n-p}(X)$$

We can define a symplectic version of the L^2 inner product on Ω^p as follows. Take $\alpha, \beta \in \Omega^p$ and define

$$\langle \alpha,\beta\rangle=\int_X\alpha\wedge\ast\beta$$

(Note: This is not positive definite or anything, its just a pairing)

Take $\alpha \in \Omega^{p-1}, \beta \in \Omega^p$. Then look at

$$d(\alpha \wedge *\beta) = d\alpha \wedge *\beta + (-1)^{p-1}\alpha \wedge d *\beta$$
$$= d\alpha \wedge *\beta + (-1)^{p-1}\alpha \wedge *(*^{-1}d*)\beta$$

Since $\int_X d(\alpha \wedge *\beta) = 0$, we integrate both sides of the above and get

$$\int_X d\alpha \wedge *\beta = (-1)^p \int \alpha \wedge *(*^{-1}d*)\beta$$

If we introduce the notation $\delta = (-1)^p *^{-1} d*$ on Ω^p then

$$\langle d\alpha, \beta \rangle = \langle \alpha, \delta\beta \rangle$$

Now, given the mapping $L: \Omega^p \to \Omega^{p+2}$, $L\alpha = \omega \wedge \alpha$ we have the following theorem **Theorem.** $[\delta, L] = d$.

This identity has no analogue in ordinary Hodge Theory. This is very important.

Proof. $x \in X, \xi \in T_x^*$, then $\sigma(d)(x,\xi) = iL_{\xi}$. On $\Lambda^p, \delta = (-1)^{p*-1}d^*$, so $\sigma(d)(x,\xi) = (-1)^{p*-1}L_{\xi}^* = -iL_{\xi}^t$. Then

$$\sigma([\delta, L]) = i[L_{\xi}^t, L] = iL_{\xi} = \sigma(d)(x, \xi)$$

so $[\delta, L]$ and d have the same symbol.

Now, $d [\delta, L]$ are first order DO's mapping $\Omega^p \to \Omega^{p+1}$, so $d - [\delta, L] : \Omega^p \to \Omega^{p+1}$ is a first order DO. We want to show that this is 0.

Let $(U, x_1, \ldots, x_n, y_1, \ldots, y_n)$ be a Darboux coordinate patch. Consider $u = \beta_1 \wedge \cdots \wedge \beta_n$ where $\beta_i =$ $1, dx_i, dy_i \text{ or } dx_i \wedge dy_i.$

These de Rham forms are a basis at each point of $\Lambda(T_x^*)$.

 $Lu = \omega \wedge u$ is again a form of this type since $\omega = \sum dx_i \wedge dy_i$ is of this form. Also *u is of this from. Note that d = 0 on a form of this type, hence $\delta = *^{-1}d*$ is 0 on a form of this type. Thus $[\delta, L] - d$ is 9 on a form of this type.