Lecture 24

Proposition. $L^{t}=*^{-1} L *$
Proposition. $u \in V$ then $\left[L_{u}^{t}, L\right]=-L_{u}$.
Proof. Proof omitted.
Let $\left(X^{2 n}, \omega\right)$ be a compact symplectic manifold. Let $x \in X$ and $V=T_{x}^{*}$. Notice
(a) From ω_{x} we get a symplectic bilinear form on T_{x}.
(b) From this form we get an identification $T_{x} \rightarrow T_{x}^{*}$.
(c) Hence from 1, 2 we get a symplectic bilinear from B_{x} on V.
(d) From B_{x} we get a $*$-operator

$$
{x}: \Lambda^{p}\left(T{x}^{}\right) \rightarrow \Lambda^{2 n-p}\left(T_{x}^{*}\right)
$$

(e) This gives us a $*$-operator on forms

$$
*: \Omega^{p}(X) \rightarrow \Omega^{2 n-p}(X)
$$

We can define a symplectic version of the L^{2} inner product on Ω^{p} as follows. Take $\alpha, \beta \in \Omega^{p}$ and define

$$
\langle\alpha, \beta\rangle=\int_{X} \alpha \wedge * \beta
$$

(Note: This is not positive definite or anything, its just a pairing)
Take $\alpha \in \Omega^{p-1}, \beta \in \Omega^{p}$. Then look at

$$
\begin{aligned}
d(\alpha \wedge * \beta) & =d \alpha \wedge * \beta+(-1)^{p-1} \alpha \wedge d * \beta \\
& =d \alpha \wedge * \beta+(-1)^{p-1} \alpha \wedge *\left(*^{-1} d *\right) \beta
\end{aligned}
$$

Since $\int_{X} d(\alpha \wedge * \beta)=0$, we integrate both sides of the above and get

$$
\int_{X} d \alpha \wedge * \beta=(-1)^{p} \int \alpha \wedge *\left(*^{-1} d *\right) \beta
$$

If we introduce the notation $\delta=(-1)^{p} *^{-1} d *$ on Ω^{p} then

$$
\langle d \alpha, \beta\rangle=\langle\alpha, \delta \beta\rangle
$$

Now, given the mapping $L: \Omega^{p} \rightarrow \Omega^{p+2}, L \alpha=\omega \wedge \alpha$ we have the following theorem
Theorem. $[\delta, L]=d$.
This identity has no analogue in ordinary Hodge Theory. This is very important.
Proof. $x \in X, \xi \in T_{x}^{*}$, then $\sigma(d)(x, \xi)=i L_{\xi}$. On $\Lambda^{p}, \delta=(-1)^{p} *^{-1} d *$, so $\sigma(d)(x, \xi)=(-1)^{p} i *^{-1} L_{\xi^{*}}=-i L_{\xi}^{t}$. Then

$$
\sigma([\delta, L])=i\left[L_{\xi}^{t}, L\right]=i L_{\xi}=\sigma(d)(x, \xi)
$$

so $[\delta, L]$ and d have the same symbol.
Now, $d[\delta, L]$ are first order DO's mapping $\Omega^{p} \rightarrow \Omega^{p+1}$, so $d-[\delta, L]: \Omega^{p} \rightarrow \Omega^{p+1}$ is a first order DO. We want to show that this is 0 .

Let $\left(U, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ be a Darboux coordinate patch. Consider $u=\beta_{1} \wedge \cdots \wedge \beta_{n}$ where $\beta_{i}=$ $1, d x_{i}, d y_{i}$ or $d x_{i} \wedge d y_{i}$.

These de Rham forms are a basis at each point of $\Lambda\left(T_{x}^{*}\right)$.
$L u=\omega \wedge u$ is again a form of this type since $\omega=\sum d x_{i} \wedge d y_{i}$ is of this form. Also $* u$ i s of this from.
Note that $d=0$ on a form of this type, hence $\delta=*^{-1} d *$ is 0 on a form of this type. Thus $[\delta, L]-d$ is 9 on a form of this type.

