Lecture 6

Review

U open \mathbb{C}^{n}. Make the convention that $\Omega^{r}(U)=\Omega^{r}$. We showed that $\Omega^{r}=\bigoplus_{p+q=r} \Omega^{p, q}$, i.e. its bigraded. And we also saw that $d=\partial+\bar{\partial}$, so the coboundary operator breaks up into bigraded pieces.

$$
\partial: \Omega^{p, q} \rightarrow \Omega^{p+1, q} \quad \bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}
$$

$\omega \in \Omega^{r}, \mu \in \Omega^{s}$. Then

$$
d(\omega \wedge \mu)=d \omega \wedge \mu+(-1)^{r} \omega \wedge d \mu
$$

there are analogous formulas for $\partial, \bar{\partial}$

$$
\bar{\partial}(\omega \wedge \mu)=\bar{\partial} \omega \wedge \mu+(-1)^{r} \omega \wedge \bar{\partial} \mu
$$

Because of bi-grading the de Rham complex breaks into subcomplexes

$$
\begin{aligned}
& (1)_{q}: \Omega^{0, q} \frac{\partial}{\square} \Omega^{1, q} \xrightarrow[\partial]{\partial} \Omega^{2, q} \xrightarrow{\partial} \cdots \\
& (2)_{p}: \Omega^{p, 0} \stackrel{\bar{\partial}}{\square} \Omega^{p, 1} \stackrel{\bar{\partial}}{\square} \Omega^{0,2} \xrightarrow[\bar{\partial}]{ } \cdots
\end{aligned}
$$

The Dolbeault complex is $(2)_{0}: \Omega^{0,0} \xrightarrow{\bar{\delta}} \Omega^{0,1}$.
Last week we showed that if U is a polydisk then the Dolbeault complex is acyclic.

Theorem. If U is a polydisk then complex $(1)_{q}$ and $(2)_{p}$ are exact for all p, q.
Proof. Take $I=\left(i_{1}, \ldots, i_{p}\right)$, define $\Omega_{I}^{p, q}:=\Omega^{0, q} \wedge d z_{I}$. And $\omega \in \Omega_{I}^{p, q}$ if and only if $\omega=\mu \wedge d z_{I}, \mu \in \Omega^{0, q}$. And

$$
\bar{\partial}(\omega)=\bar{\partial}\left(\mu \wedge d z_{I}\right)=\bar{\partial} \mu \wedge d z_{I}
$$

Therefore, if $\omega \in \Omega_{I}^{p, q}$, then $\bar{\partial} \omega \in \Omega_{I}^{p, q+1}$. We can get another complex, define (2) $p_{I}: \Omega^{p, 0} \xrightarrow{\bar{b}} \Omega_{I}^{p, 1} \xrightarrow{\bar{o}} \ldots$ Now the map $\mu \in \Omega^{0, q} \mapsto \mu \wedge d z_{I}$. This maps (2) bijectively onto (2) $)_{I}$. So (2) is acyclic. And $\Omega^{p, q}=\bigoplus_{I} \Omega_{I}^{p, q}$ implies that $(2)_{p}$ is acyclic.

What about complex with ∂ ?
Take $\omega \in \Omega^{p, q}$, then

$$
\omega=\sum f_{I, J} d z_{I} \wedge d \bar{z}_{J} \quad f_{I, J} \in C^{\infty}(U), \quad|I|=p,|J|=q
$$

Take complex conjugates

$$
\bar{\omega}=\sum \bar{f}_{I, J} d \bar{z}_{I} \wedge d z_{J} \in \Omega^{q, p} \quad \overline{\partial \omega}=\bar{\partial} \bar{\omega}
$$

This map $\omega \mapsto \bar{\omega}$ maps $(1)_{p}$ to $(2)_{p}$ so $(2)_{p}$ acyclic implies that $(1)_{p}$ is acyclic.

The Subcomplex (A, d)

Another complex to consider. We look at the map $\Omega^{p, 0} \xrightarrow{\bar{o}} \Omega^{p, 1}$. Denote by A^{p} the kernel of this map, $\operatorname{ker}\left\{\Omega^{p, 0} \xrightarrow{\bar{\partial}} \Omega^{p, 1}\right\}$. Suppose $\mu \in A^{p}, \partial \mu \in \Omega^{p+1,0}$, and we know that $\bar{\partial} \partial \mu=-\partial \overline{\partial \mu}=0$, so $\partial \mu \in A^{p+1}$. Moreover, $d \mu=\partial \mu+\bar{\partial} \mu=\partial \mu$, so we have a subcomplex (A, d) of (Ω, d), the de Rham complex

$$
A^{0} \xrightarrow{d} A^{1} \xrightarrow{d} A^{2} \xrightarrow{d} \cdots
$$

This complex has a fairly simple description. Suppose $\mu \in \Omega^{p, 0}, \mu=\sum_{|I|=p} f_{I} d z_{I}$, and suppose further that $\bar{\partial} \mu=0$, i.e. $\mu \in A^{p}$. Then

$$
\bar{\partial} \mu=\sum \frac{\partial f_{I}}{\partial \bar{z}_{i}} d \bar{z}_{i} \wedge d z_{I}=0 \quad \frac{\partial f_{I}}{\partial \bar{z}_{i}}=0 \quad i=1, \ldots, n
$$

so the f_{i} are holomorphic. Because of this we have the following definition
Definition. The complex $\left(A^{*}, d\right)$ is called the Holomorphic de Rham complex.
When is this complex acyclic? To answer this, we go back to the real de Rham complex.

Reminder of Real de Rham Complex

Consider the usual (real) de Rham complex. Let U be an open set in \mathbb{R}^{n}. Then we know
Theorem (Poincare Lemma). If U is convex then $\left(\Omega^{*}(U), d\right)$ is exact.
Proof. U convex, and to make things simpler, let $0 \in U$. Let $\rho: U \rightarrow U, \rho \equiv 0$. Construct a homotopy operator $Q: \Omega^{k}(U) \rightarrow \Omega^{k-1}(U)$, satisfying

$$
d Q \omega+Q d \omega=\omega-\rho^{*} \omega
$$

for all $\omega \in \Omega^{*}(U)$. The exactness follows trivially if we have this operator. Now, what is the operator? We define it the following way.

If $\omega=\sum f_{I}(x) d x_{I}, f_{I} \in C^{\infty}(U)$. Then

$$
Q \omega=\sum_{r, I}(-1)^{r} x_{i_{r}}\left(\int_{0}^{1} t^{k-1} f_{I}(t x) d t\right) d x_{i_{1}} \wedge \cdots \wedge \widehat{d x_{i_{r}}} \wedge \cdots \wedge d x_{i_{k}}
$$

2nd Homework Problem The holomorphic version of this works. Let $U \subseteq \mathbb{R}^{2 n} \subseteq \mathbb{C}^{n}$, convex with $0 \in \bar{U}$. Take $\omega=\sum_{|I|=k} f_{I} d z_{I}, f_{I} \in \mathcal{O}(U)$. Let Q be the same operator (but holomorphic version)

$$
Q \omega=\sum_{r, I}(-1)^{r} z_{i_{r}}\left(\int_{0}^{1} t^{k-1} f_{I}(t z) d t\right) d z_{i_{1}} \wedge \cdots \wedge \widehat{d z_{i_{r}}} \wedge \cdots \wedge d z_{i_{k}}
$$

Show $Q: A^{k} \rightarrow A^{k-1}$ and $(d Q+Q d) \omega=\omega-\rho^{*} \omega$. Homework is to check that this all works.
Theorem. U a polydisk. Then if $\omega \in \Omega^{1,1}(U)$ and is closed then there exists a C^{∞} function f so that $\omega=\partial \bar{\partial} f$. (f is called the potential function of ω).

This is an important lemma in Kaehler geometry, which we will use later.
Proof. Just diagram chasing:

let $\omega=\omega^{1,1} \in \Omega^{1,1}, d \omega=0$, so $\partial \omega=\bar{\partial} \omega=0$. $\bar{\partial} \omega=0$ implies there is an a so that $\omega=\bar{\partial} a, a \in \Omega^{1,0}$. We can find $b \in A^{1}$ so that $\partial a=\partial b$. So $\partial(a-b)=0$, and $a-b=\partial c$, where $c \in \Omega^{0,0}=C^{\infty}$. Then $\bar{\partial}(a-b)=\bar{\partial} \partial c$. Put $\bar{\partial}(a-b)=\overline{\partial a}=\omega$. So $\omega=\bar{\partial} \partial c$.

Functoriality

U open in \mathbb{C}^{n}, V open in \mathbb{C}^{k}. Coordinatized by $\left(z_{1}, \ldots, z_{n}\right),\left(w_{1}, \ldots, w_{k}\right)$. Let $f: U \rightarrow V$ be a mapping, $f=\left(f_{1}, \ldots, f_{k}\right), f_{i}: U \rightarrow \mathbb{C}$. f is holomorphic if each f_{i} is holomorphic.

Theorem. f is holomorphic iff $f^{*}\left(\Omega^{1,0}(V) \subseteq \Omega^{1,0}(U)\right.$, i.e. for every $\omega \in \Omega^{1,0}(V), f^{*} \omega \in \Omega^{1,0}(U)$.
Proof. Necessity. $\omega=d \omega_{i}$, then

$$
f^{*} \omega=d f_{i}=\partial f_{i}+\bar{\partial} f_{i} \in \Omega^{1,0}(U)
$$

then $\bar{\partial} f_{i}=0$, so $f_{i} \in \mathcal{O}(U)$.
Sufficiency. Check this.
Corollary. f holomorphic. Then $f^{*} \Omega^{p, q}(V) \subseteq \Omega^{p, q}(U)$, also $\omega \in \Omega^{p, q}(V)$, then $f^{*} d \omega=d f^{*} \omega$, which implies that $f^{*} \partial \omega=\partial f^{*} \omega, f^{*} \bar{\partial} \omega=\bar{\partial} f^{*} \omega$.

