MEASURE AND INTEGRATION: LECTURE 2

Proposition 0.1. Let \mathcal{M} be a σ-algebra on X, let Y be a topological space, and let $f: X \rightarrow Y$.
(a) Let Ω be a collection of sets $E \subset Y$ such that $f^{-1}(E) \in \mathcal{M}$. Then Ω is a σ-algebra on Y.
(b) If f is measurable and $E \subset Y$ is Borel, then $f^{-1}(E) \in \mathcal{M}$.
(c) If $Y=[-\infty, \infty]$ (with open sets along with $[-\infty, a)$ and $(b, \infty]$ with $a, b \in \mathbb{R})$ and $f^{-1}((\alpha, \infty]) \in \mathcal{M}$ for all $\alpha \in[-\infty, \infty]$, then f is measurable.

Proof. (a) Since $f^{-1}(Y)=X \in \mathcal{M}$, we have $Y \in \Omega$. Also $f^{-1}\left(E^{c}\right)=$ $\left(f^{-1}(E)\right)^{c} \in \mathcal{M} \Rightarrow E^{c} \in \mathcal{M}$. Lastly,

$$
f^{-1}\left(\cup_{i=1}^{\infty} E_{i}\right)=\cup_{i=1}^{\infty} f^{-1}\left(E_{i}\right) \in \mathcal{M}
$$

(b) Because f is measurable, all open sets are in Ω. Since Ω is a σ-algebra, we have $\mathcal{B} \subset \Omega$.
(c) Recall $\Omega=\left\{E \mid f^{-1}(E) \in \mathcal{M}\right\}$. Given $\alpha \in \mathbb{R}$, choose $\alpha_{n}<\alpha$ so that $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. By assumption $\left(\alpha_{n}, \infty\right] \in \Omega$. Then $[-\infty, \alpha)=\cup_{n=1}^{\infty}\left[-\infty, \alpha_{n}\right]=\cup_{n=1}^{\infty}\left(\alpha_{n}, \infty\right]^{c}$. Thus $[-\infty, \alpha) \in \Omega$. Then $(\alpha, \beta)=[-\infty, \beta) \cap(\alpha, \infty] \in \Omega$. Hence, since Ω is a σ-algebra, Ω contains all open sets. It follows that f is measurable.

Remark. All of these are equivalent:

$$
\begin{aligned}
f^{-1}([-\infty, \alpha)) \in \mathcal{M} & \Longleftrightarrow f^{-1}([-\infty, \alpha]) \in \mathcal{M} \\
& \Longleftrightarrow f^{-1}([\alpha, \infty]) \in \mathcal{M} \\
& \Longleftrightarrow f^{-1}((-\infty, \alpha)) \& f^{-1}(\{-\infty\}) \in \mathcal{M}
\end{aligned}
$$

Limits. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R} or $[-\infty, \infty]$. Set

$$
b_{k}=\sup \left\{a_{k}, a_{k+1}, \ldots\right\}, k=1,2, \ldots
$$

Then $\inf b_{k}=\limsup _{n \rightarrow \infty} a_{n}$. As k gets larger, the sup is being taken over a smaller set, so $b_{k} \geq b_{k+1} \geq \ldots$. Thus b_{k} is a (weakly) decreasing sequence and so $\lim b_{k}=\inf b_{k}$ exists. In other words,

[^0]limsup is the largest limit point of the sequence (there exists a subsequence which converges to limsup). Similarly, we could instead set $b_{k}=\inf \left\{a_{k}, a_{k+1}, \ldots\right\}$ and then $\sup b_{k}=\liminf _{n \rightarrow \infty} a_{n}$, that is, liminf is the smallest limit point of the sequence. Note the relation $\liminf a_{n}=-\lim \sup \left\{-a_{n}\right\}$.

Proposition 0.2. A sequence $\left\{a_{n}\right\}$ converges if and only if

$$
\lim \inf a_{n}=\limsup a_{n}=\lim a_{n}
$$

Limits of functions. Let $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ be a sequence of functions.

$$
\begin{gathered}
\left(\sup f_{n}\right)(x)=\sup \left\{f_{n}(x)\right\} \\
\left(\limsup f_{n}\right)(x)=\lim _{n \rightarrow \infty} f_{n}(x)
\end{gathered}
$$

If, for each $x \in X$, the sequence $\left\{f_{n}(x)\right\}$ converges, then $f(x)=$ $\lim f_{n}(x)$ is the pointwise limit. This works for $X=[-\infty, \infty]$ (convergence to $\pm \infty$ is obvious).

Theorem 0.3. If, for each $i=1,2, \ldots$, the function $f_{i}: X \rightarrow[-\infty, \infty]$ is measurable, then

$$
g=\sup _{i>1} f_{i} \text { and } h=\limsup _{n \rightarrow \infty} f_{n}
$$

are both measurable.
Proof. NTS $g^{-1}((\alpha, \infty]) \in \mathcal{M}$ for all α. We have

$$
g^{-1}((\alpha, \infty])=\bigcup_{n=1}^{\infty} f_{n}^{-1}((\alpha, \infty])
$$

If x is a member of the LHS, then $g(x)>\alpha$. Thus, some $f_{n}>\alpha$ from the definition of sup. If x is a member of the RHS, then $f_{i}(x)>\alpha$ for some i, so $g \geq f_{i}(x)>\alpha$. Thus, $x \in g^{-1}((\alpha, \infty])$. Since $f_{n}^{-1}((\alpha, \infty]) \in$ \mathcal{M}, and since countable unions are in $\mathcal{M}, g \in \mathcal{M}$. But then limsup is measurable as well since by definition

$$
\limsup f_{k}=\inf _{j \geq 1}\left(\sup _{k \geq j} f_{k}\right) .
$$

Corollary 0.4. (a) Pointwise limits of measurable functions are measurable.
(b) If f and g are measurable, then $\max \{f, g\}$ and $\min \{f m g\}$ are measurable.

Define " f plus" and " f minus" as follows:

$$
f^{+}=\max \{f, 0\}, f^{-}=-\min \{f, 0\}
$$

Then $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.
Simple functions. A simple function is a function that takes only finitely many values in \mathbb{R} and does not take values $\pm \infty$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the values and $A_{i}=\left\{x \in X \mid s(x)=\alpha_{i}\right\}$. Then

$$
s=\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} .
$$

Note: $\chi_{A_{i}}$ is measurable $\Longleftrightarrow A_{i} \in \mathcal{M}$. Constant function α_{i} is measurable \Rightarrow product $\alpha_{i} \chi_{A_{i}}$ is measurable. Since sums of measurable functions are measurable, s is measurable \Longleftrightarrow all A_{i} are measurable.

Theorem 0.5. Let $f: X \rightarrow[0, \infty]$ be measurable. Then there exists a sequence $0 \leq s_{1} \leq s_{2} \leq \ldots$ of measurable simple functions such that $\lim _{n \rightarrow \infty} s_{n}=f$.

Proof. Partition $[0, n]$ into intervals of length 2^{-n}. Define $\varphi_{n}:[0, \infty] \rightarrow$ $[0, \infty)$ as follows. Let $\delta_{n}=2^{-n}$. For each t, choose $k_{n}(t)$ such that $k \delta_{n} \leq t<(k+1) \delta_{n}$. Put

$$
\varphi_{n}(t)= \begin{cases}k_{n}(t) \delta_{n} & 0 \leq t<n \\ n & n \leq t \leq \infty\end{cases}
$$

Note that each φ_{n} is Borel measurable, $\varphi_{1} \leq \varphi_{2} \leq \cdots \leq t$ and $\lim _{n \rightarrow \infty} \varphi_{n}(t)=t$. Let $s_{n}=\varphi_{n} \circ f$. Then for any open set U, $s_{n}^{-1}(U)=f^{-1} \varphi_{n}^{-1}(U)=f^{-1}($ Borel set $) \in \mathcal{M}$. Thus s_{n} is measurable, increasing, and its limit is f.

A positive measure is a mapping $\mu: \mathcal{M} \rightarrow[0, \infty]$ which is countably additive:

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \text { for disjoint } A_{i}
$$

Lebesgue Integral. Let (X, \mathcal{M}, μ) be a measure space. Let $s: X \rightarrow$ $[0, \infty)$ be the simple function $s=\sum_{i=1}^{N} \alpha_{i} \chi_{A_{i}}$, where the A_{i} are disjoint. For each $E \in \mathcal{M}$, define the integral

$$
\int_{E} s d \mu=\sum_{i=1}^{N} \alpha_{i} \mu\left(A_{i} \cap E\right) .
$$

For more general measurable functions $f: X \rightarrow[0, \infty]$, then

$$
\int_{E} f d \mu=\sup \left\{\int_{E} s d \mu \mid s \text { simple, } 0 \leq s \leq f\right\}
$$

If $f: X \rightarrow[-\infty, \infty]$, then

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu
$$

provided both terms on the right-hand side are finite.

[^0]: Date: September 9, 2003.

