MEASURE AND INTEGRATION: LECTURE 2

Proposition 0.1. Let \mathcal{M} be a σ -algebra on X, let Y be a topological space, and let $f: X \to Y$.

- (a) Let Ω be a collection of sets $E \subset Y$ such that $f^{-1}(E) \in \mathcal{M}$. Then Ω is a σ -algebra on Y.
- (b) If f is measurable and $E \subset Y$ is Borel, then $f^{-1}(E) \in \mathcal{M}$.
- (c) If $Y = [-\infty, \infty]$ (with open sets along with $[-\infty, a)$ and $(b, \infty]$ with $a, b \in \mathbb{R}$) and $f^{-1}((\alpha, \infty]) \in \mathcal{M}$ for all $\alpha \in [-\infty, \infty]$, then f is measurable.
- Proof. (a) Since $f^{-1}(Y) = X \in \mathcal{M}$, we have $Y \in \Omega$. Also $f^{-1}(E^c) = (f^{-1}(E))^c \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$. Lastly,

$$f^{-1}(\bigcup_{i=1}^{\infty} E_i) = \bigcup_{i=1}^{\infty} f^{-1}(E_i) \in \mathcal{M}.$$

- (b) Because f is measurable, all open sets are in Ω . Since Ω is a σ -algebra, we have $\mathcal{B} \subset \Omega$.
- (c) Recall $\Omega = \{E \mid f^{-1}(E) \in \mathcal{M}\}$. Given $\alpha \in \mathbb{R}$, choose $\alpha_n < \alpha$ so that $\alpha_n \to \alpha$ as $n \to \infty$. By assumption $(\alpha_n, \infty] \in \Omega$. Then $[-\infty, \alpha) = \bigcup_{n=1}^{\infty} [-\infty, \alpha_n] = \bigcup_{n=1}^{\infty} (\alpha_n, \infty]^c$. Thus $[-\infty, \alpha) \in \Omega$. Then $(\alpha, \beta) = [-\infty, \beta) \cap (\alpha, \infty] \in \Omega$. Hence, since Ω is a σ -algebra, Ω contains all open sets. It follows that f is measurable.

Remark. All of these are equivalent:

$$f^{-1}([-\infty,\alpha]) \in \mathcal{M} \quad \iff f^{-1}([-\infty,\alpha]) \in \mathcal{M}$$
$$\iff f^{-1}([\alpha,\infty]) \in \mathcal{M}$$
$$\iff f^{-1}((-\infty,\alpha)) \& f^{-1}(\{-\infty\}) \in \mathcal{M}.$$

Limits. Let $\{a_n\}$ be a sequence in \mathbb{R} or $[-\infty, \infty]$. Set

$$b_k = \sup\{a_k, a_{k+1}, \ldots\}, \ k = 1, 2, \ldots$$

Then $\inf b_k = \limsup_{n \to \infty} a_n$. As k gets larger, the sup is being taken over a smaller set, so $b_k \ge b_{k+1} \ge \ldots$. Thus b_k is a (weakly) decreasing sequence and so $\lim b_k = \inf b_k$ exists. In other words,

Date: September 9, 2003.

lim sup is the largest limit point of the sequence (there exists a subsequence which converges to lim sup). Similarly, we could instead set $b_k = \inf\{a_k, a_{k+1}, \ldots\}$ and then $\sup b_k = \liminf_{n\to\infty} a_n$, that is, lim inf is the smallest limit point of the sequence. Note the relation $\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} \{-a_n\}.$

Proposition 0.2. A sequence $\{a_n\}$ converges if and only if

 $\liminf a_n = \limsup a_n = \lim a_n.$

Limits of functions. Let $\{f_n\}: X \to \mathbb{R}$ be a sequence of functions.

$$(\sup f_n)(x) = \sup\{f_n(x)\}$$
$$(\limsup f_n)(x) = \lim_{n \to \infty} f_n(x)$$

If, for each $x \in X$, the sequence $\{f_n(x)\}$ converges, then $f(x) = \lim f_n(x)$ is the pointwise limit. This works for $X = [-\infty, \infty]$ (convergence to $\pm \infty$ is obvious).

Theorem 0.3. If, for each $i = 1, 2, ..., the function <math>f_i: X \to [-\infty, \infty]$ is measurable, then

$$g = \sup_{i>1} f_i \text{ and } h = \limsup_{n \to \infty} f_n$$

are both measurable.

Proof. NTS $g^{-1}((\alpha, \infty]) \in \mathcal{M}$ for all α . We have

$$g^{-1}((\alpha,\infty]) = \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,\infty]).$$

If x is a member of the LHS, then $g(x) > \alpha$. Thus, some $f_n > \alpha$ from the definition of sup. If x is a member of the RHS, then $f_i(x) > \alpha$ for some i, so $g \ge f_i(x) > \alpha$. Thus, $x \in g^{-1}((\alpha, \infty])$. Since $f_n^{-1}((\alpha, \infty]) \in \mathcal{M}$, and since countable unions are in $\mathcal{M}, g \in \mathcal{M}$. But then lim sup is measurable as well since by definition

$$\limsup f_k = \inf_{j \ge 1} \left(\sup_{k \ge j} f_k \right).$$

Corollary 0.4. (a) Pointwise limits of measurable functions are measurable.

(b) If f and g are measurable, then $\max\{f, g\}$ and $\min\{fmg\}$ are measurable.

Define "f plus" and "f minus" as follows:

$$f^+ = \max\{f, 0\}, f^- = -\min\{f, 0\}.$$

Then $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Simple functions. A simple function is a function that takes only finitely many values in \mathbb{R} and does not take values $\pm \infty$. Let $\alpha_1, \ldots, \alpha_n$ be the values and $A_i = \{x \in X \mid s(x) = \alpha_i\}$. Then

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}.$$

Note: χ_{A_i} is measurable $\iff A_i \in \mathcal{M}$. Constant function α_i is measurable \Rightarrow product $\alpha_i \chi_{A_i}$ is measurable. Since sums of measurable functions are measurable, s is measurable \iff all A_i are measurable.

Theorem 0.5. Let $f: X \to [0, \infty]$ be measurable. Then there exists a sequence $0 \le s_1 \le s_2 \le \ldots$ of measurable simple functions such that $\lim_{n\to\infty} s_n = f$.

Proof. Partition [0, n] into intervals of length 2^{-n} . Define $\varphi_n \colon [0, \infty] \to [0, \infty)$ as follows. Let $\delta_n = 2^{-n}$. For each t, choose $k_n(t)$ such that $k\delta_n \leq t < (k+1)\delta_n$. Put

$$\varphi_n(t) = \begin{cases} k_n(t)\delta_n & 0 \le t < n; \\ n & n \le t \le \infty. \end{cases}$$

Note that each φ_n is Borel measurable, $\varphi_1 \leq \varphi_2 \leq \cdots \leq t$ and $\lim_{n\to\infty}\varphi_n(t) = t$. Let $s_n = \varphi_n \circ f$. Then for any open set U, $s_n^{-1}(U) = f^{-1}\varphi_n^{-1}(U) = f^{-1}(\text{Borel set}) \in \mathcal{M}$. Thus s_n is measurable, increasing, and its limit is f.

A positive measure is a mapping $\mu \colon \mathcal{M} \to [0, \infty]$ which is countably additive:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \text{ for disjoint } A_i.$$

Lebesgue Integral. Let (X, \mathcal{M}, μ) be a measure space. Let $s: X \to [0, \infty)$ be the simple function $s = \sum_{i=1}^{N} \alpha_i \chi_{A_i}$, where the A_i are disjoint. For each $E \in \mathcal{M}$, define the integral

$$\int_E sd\mu = \sum_{i=1}^N \alpha_i \mu(A_i \cap E).$$

For more general measurable functions $f \colon X \to [0, \infty]$, then

$$\int_{E} f d\mu = \sup \left\{ \int_{E} s d\mu \mid s \text{ simple, } 0 \le s \le f \right\}.$$

If $f: X \to [-\infty, \infty]$, then
$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu,$$

provided both terms on the right-hand side are finite.