MATH 18.152 - PROBLEM SET # 1

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Problem Set # 1, Due: at the start of class on 9-15-11

I. Let $\Omega \subset \mathbb{R}^n$ be domain with a smooth boundary $\partial \Omega$. Let $u, v \in C^2(\overline{\Omega})$, where $\overline{\Omega}$ denotes the closure of Ω . Show that the *Green identity* holds:

(0.0.1)
$$\int_{\Omega} u(x)\Delta v(x) - v(x)\Delta u(x) d^{n}x = \int_{\partial\Omega} u(\sigma)\nabla_{\hat{\mathbf{N}}(\sigma)}v(\sigma) - v(\sigma)\nabla_{\hat{\mathbf{N}}(\sigma)}u(\sigma) d\sigma,$$

where $\hat{\mathbf{N}}(\sigma)$ is the outward unit-normal to $\partial\Omega$ at σ , and $\Delta \stackrel{\text{def}}{=} \sum_{i=1}^{n} \partial_i^2$ is the Laplace operator in \mathbb{R}^n .

Hint: Apply the divergence theorem to the vectorfield $\mathbf{F} \stackrel{\text{def}}{=} u \nabla v - v \nabla u$, and use the fact that $\Delta = \nabla \cdot \nabla \stackrel{\text{def}}{=} \text{div} \circ \text{grad}.$

II. Prove that if ϵ is a number satisfying $0 < \epsilon < 1/2$, then $f(x) \stackrel{\text{def}}{=} \sin(x) \frac{\ln(x^2+1)}{|x|^{1-\epsilon}}$ satisfies $f \in L^2(\mathbb{R})$, that is, that $\int_{\mathbb{R}} |f(x)|^2 dx < \infty$.

Hint: Do not try to precisely evaluate the integral! There are three bad spots to worry about: x = 0, and $x = \pm \infty$. Try looking in the "improper integrals" section of your old calculus book if you get stuck.

- **III.** Let V be a vector space over \mathbb{R} (think of $V \simeq \mathbb{R}^n$ if you are unfamiliar with the abstract notion of a vector space). Let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, $(v, w) \to \langle v, w \rangle$ be a "bilinear function" with the following properties:
 - $\langle v, w \rangle = \langle w, v \rangle$
 - $\langle v, v \rangle > 0$ unless v = 0, in which case $\langle 0, 0 \rangle = 0$.
 - If $a, b \in \mathbb{R}$ and $v, \tilde{v}, w \in V$, then $\langle av + b\tilde{v}, w \rangle = a \langle v, w \rangle + b \langle \tilde{v}, w \rangle$.

The above function \langle , \rangle is an abstract version of the "dot-product" from vector calculus. Also, define the norm of a vector v by

$$(0.0.2) ||v|| \stackrel{\text{def}}{=} |\langle v, v \rangle|^{1/2}.$$

The quantity (0.0.2) is a measure of the size of v.

Show that the Cauchy-Schwartz inequality holds for all vectors v, w:

$$(0.0.3) |\langle v, w \rangle| \le ||v|| ||w||.$$

Then use (0.0.3) to prove the triangle inequality:

$$(0.0.4) ||v+w|| \le ||v|| + ||w||.$$

Hint for (0.0.3): The inequality (0.0.3) is easy when w = 0, so you may assume that $w \neq 0$. Define the function $q(t) \stackrel{\text{def}}{=} \langle v + tw, v + tw \rangle$. Using the properties of \langle , \rangle , show that $q(t) = ||v||^2 + 2t \langle v, w \rangle + t^2 ||w||^2$ (hence q stands for "quadratic") and that $q(t) \geq 0$ for

MATH 18.152 - PROBLEM SET # 1

all t. Then using ordinary calculus, show that the minimum value taken by q occurs when $t_* = -\frac{\langle v, w \rangle}{\|w\|^2}$, and that the non-negativity of $q(t_*)$ implies the inequality (0.0.3). **IV.** Let $f, g \in L^2(\mathbb{R})$ (i.e., $\int_{\mathbb{R}} |f(x)|^2 dx < \infty$, and similarly for g). Define $\langle f, g \rangle$ by

(0.0.5)
$$\langle f,g \rangle \stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x)g(x)dx.$$

Show that the function \langle, \rangle has all three properties of a dot product from the previous problem (for the second property, if you are unfamiliar with measure theory, then you are allowed to cheat a bit by assuming that the functions are continuous). Then use this to conclude the following super-important "Cauchy-Schwarz" inequality for integrals:

(0.0.6)
$$\left| \int_{\mathbb{R}} f(x)g(x) \, dx \right| \le \left(\int_{\mathbb{R}} |f(x)|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}} |g(x)|^2 \, dx \right)^{1/2}.$$

Remark 0.0.1. Inequalities analogous to (0.0.6) are used all the time in PDE analysis. An analogous inequality also holds if f and g are functions defined on a domain $\Omega \subset \mathbb{R}^n$ and the integrals are taken over Ω . Also, the Cauchy-Schwarz inequality holds if f and g are complex-valued functions.

Finally, show that if $f \in L^2(\mathbb{R})$, then

(0.0.7)
$$\left| \int_{\mathbb{R}} \sin(x) \frac{\ln(x^2 + 1)}{|x|^{3/4}} f(x) \, dx \right| \le C \left(\int_{\mathbb{R}} |f(x)|^2 \, dx \right)^{1/2},$$

where C > 0 is some constant that you do not have to explicitly evaluate. V. Read **Appendix A** of your textbook. 18.152 Introduction to Partial Differential Equations. Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.