## MATH 18.152-PROBLEM SET \# 1

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

## Problem Set \# 1, Due: at the start of class on 9-15-11

I. Let $\Omega \subset \mathbb{R}^{n}$ be domain with a smooth boundary $\partial \Omega$. Let $u, v \in C^{2}(\bar{\Omega})$, where $\bar{\Omega}$ denotes the closure of $\Omega$. Show that the Green identity holds:

$$
\begin{equation*}
\int_{\Omega} u(x) \Delta v(x)-v(x) \Delta u(x) d^{n} x=\int_{\partial \Omega} u(\sigma) \nabla_{\hat{\mathbf{N}}(\sigma)} v(\sigma)-v(\sigma) \nabla_{\hat{\mathbf{N}}(\sigma)} u(\sigma) d \sigma \tag{0.0.1}
\end{equation*}
$$

where $\hat{\mathbf{N}}(\sigma)$ is the outward unit-normal to $\partial \Omega$ at $\sigma$, and $\Delta \stackrel{\text { def }}{=} \sum_{i=1}^{n} \partial_{i}^{2}$ is the Laplace operator in $\mathbb{R}^{n}$.

Hint: Apply the divergence theorem to the vectorfield $\mathbf{F} \stackrel{\text { def }}{=} u \nabla v-v \nabla u$, and use the fact that $\Delta=\nabla \cdot \nabla \stackrel{\text { def }}{=} \operatorname{div} \circ$ grad.
II. Prove that if $\epsilon$ is a number satisfying $0<\epsilon<1 / 2$, then $f(x) \stackrel{\text { def }}{=} \sin (x) \frac{\ln \left(x^{2}+1\right)}{|x|^{1-\epsilon}}$ satisfies $f \in L^{2}(\mathbb{R})$, that is, that $\int_{\mathbb{R}}|f(x)|^{2} d x<\infty$.

Hint: Do not try to precisely evaluate the integral! There are three bad spots to worry about: $x=0$, and $x= \pm \infty$. Try looking in the "improper integrals" section of your old calculus book if you get stuck.
III. Let $V$ be a vector space over $\mathbb{R}$ (think of $V \simeq \mathbb{R}^{n}$ if you are unfamiliar with the abstract notion of a vector space). Let $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R},(v, w) \rightarrow\langle v, w\rangle$ be a "bilinear function" with the following properties:

- $\langle v, w\rangle=\langle w, v\rangle$
- $\langle v, v\rangle>0$ unless $v=0$, in which case $\langle 0,0\rangle=0$.
- If $a, b \in \mathbb{R}$ and $v, \widetilde{v}, w \in V$, then $\langle a v+b \widetilde{v}, w\rangle=a\langle v, w\rangle+b\langle\widetilde{v}, w\rangle$.

The above function $\langle$,$\rangle is an abstract version of the "dot-product" from vector calculus.$ Also, define the norm of a vector $v$ by

$$
\begin{equation*}
\|v\| \stackrel{\text { def }}{=}|\langle v, v\rangle|^{1 / 2} \tag{0.0.2}
\end{equation*}
$$

The quantity (0.0.2) is a measure of the size of $v$.
Show that the Cauchy-Schwartz inequality holds for all vectors $v, w$ :

$$
|\langle v, w\rangle| \leq\|v\|\|w\|
$$

Then use (0.0.3) to prove the triangle inequality:

$$
\begin{equation*}
\|v+w\| \leq\|v\|+\|w\| \tag{0.0.4}
\end{equation*}
$$

Hint for (0.0.3): The inequality 0.0 .3 ) is easy when $w=0$, so you may assume that $w \neq 0$. Define the function $q(t) \stackrel{\text { def }}{=}\langle v+t w, v+t w\rangle$. Using the properties of $\langle$,$\rangle , show that$ $q(t)=\|v\|^{2}+2 t\langle v, w\rangle+t^{2}\|w\|^{2}$ (hence $q$ stands for "quadratic") and that $q(t) \geq 0$ for
all $t$. Then using ordinary calculus, show that the minimum value taken by $q$ occurs when $t_{*}=-\frac{\langle v, w\rangle}{\|w\|^{2}}$, and that the non-negativity of $q\left(t_{*}\right)$ implies the inequality (0.0.3).
IV. Let $f, g \in L^{2}(\mathbb{R})$ (i.e., $\int_{\mathbb{R}}|f(x)|^{2} d x<\infty$, and similarly for $g$ ). Define $\langle f, g\rangle$ by

$$
\begin{equation*}
\langle f, g\rangle \stackrel{\text { def }}{=} \int_{\mathbb{R}} f(x) g(x) d x \text {. } \tag{0.0.5}
\end{equation*}
$$

Show that the function $\langle$,$\rangle has all three properties of a dot product from the previous$ problem (for the second property, if you are unfamiliar with measure theory, then you are allowed to cheat a bit by assuming that the functions are continuous). Then use this to conclude the following super-important "Cauchy-Schwarz" inequality for integrals:

$$
\begin{equation*}
\left|\int_{\mathbb{R}} f(x) g(x) d x\right| \leq\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}}|g(x)|^{2} d x\right)^{1 / 2} \tag{0.0.6}
\end{equation*}
$$

Remark 0.0.1. Inequalities analogous to (0.0.6) are used all the time in PDE analysis. An analogous inequality also holds if $f$ and $g$ are functions defined on a domain $\Omega \subset \mathbb{R}^{n}$ and the integrals are taken over $\Omega$. Also, the Cauchy-Schwarz inequality holds if $f$ and $g$ are complex-valued functions.

Finally, show that if $f \in L^{2}(\mathbb{R})$, then

$$
\begin{equation*}
\left|\int_{\mathbb{R}} \sin (x) \frac{\ln \left(x^{2}+1\right)}{|x|^{3 / 4}} f(x) d x\right| \leq C\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2} \tag{0.0.7}
\end{equation*}
$$

where $C>0$ is some constant that you do not have to explicitly evaluate.
V. Read Appendix A of your textbook.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

