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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Midterm Exam Solutions, Thursday, October 27

I. a) Setting

(1) u(t, x) = v(t)w(x)

leads to the ODEs

v′(t) w′′(x)
(2) = = λ

v(t −w(x)
∈ R.

)

The solutions to (2) that satisfy the boundary conditions are

(3) v(t) = Aeλt,

(4) w(x) = B sin( |λ|x),

where A,B are constants,

√

(5) λ = m2π2,

and m ≥ 0 is an integer. Thus, we have derived an infinite family of solutions

def
um(t, x) = Ame

m2π2

(6) t sin(mπx).

b) For a general f(x), the solution to the PDE is a superposition

(7) u(t, x) =
m

∑∞
2

A π
me

m 2t sin(mπx),
=1

(8) Am = 2

∫
f(x) sin(mπx) dx.

[0,1]

Let n > 0 be any integer, and consider the initial datum f(x) = ε sin(nπx), where ε > 0
is a small number. Then this function satisfies maxx∈[0,1] |f(x)| ≤ ε, Am = ε if m = n, and
Am = 0 otherwise. Thus, the corresponding solution is

u(t, x) = εen
2π2

(9) t sin(nπx).

At time t = 1, the amplitude of this solution has grown to εen
2π2
. Thus, by choosing n to

be large, at t = 1, the solution can be arbitrarily large, even though the datum satisfies
maxx [0,1] |f(x)∈ | ≤ ε.
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In contrast, when f = 0, the solution remains 0 for all time. Thus, arbitrarily small
changes in the data can lead to arbitrarily large changes in the solution, and the backwards
heat equation is therefore not well posed (i.e. it is ill-posed). This is in complete contrast to
the ordinary heat equation, which is well-posed. For the ordinary heat equation, the Fourier
modes exponentially deca√ y in time (as opposed to the exponential growth from (9)).

II. Define v(x) = u(x) + R. Then ∆v = 0, and v(x) ≥ 0 for x ∈ BR(0). Thus by Harnack’s
inequality

R(R− |x|) R(R + x )
(10) v(0) ≤ v(x)

| |
(R + |x|)

≤ v(0)
2 (R− |x|)2

holds for x ∈ BR(0). Thus, for x ∈ BR(0), we have

R(R x ) R(R + x )
(11)

{ − | | √ | | √
(R + x )2

− 1 R ≤ u x) ≤
| |

}
(

{
1 R.

(R− |x|)2
−

For a fixed x, we let R

}
→∞ and apply L’Hôpital’s rule to conclude that

(12) 0 ≤ u(x) ≤ 0.

Thus,

(13) u(x) = 0.

III. Let (t0, x0) be the point in [0, 2] × [0, 1] at which u achieves its max. We will show that
u(t0, x0) ≤ 0, which implies the desired conclusion.

If t0 = 0, x0 = 0, or x0 = 1, then the conditions on f, g, h immediately imply that
u(t0, x0) ≤ 0, and we are done. So let us assume that none of these cases occur.

If t0 = 2, then by the above remarks we can assume that x0 ∈ (0, 1). Then ∂tu(2, x0) ≥ 0,
since otherwise we could slightly decrease t0 and cause the value of u to increase, which con-
tradicts the definition of a max. Also, by standard calculus, we must have that ∂xu(2, x0) =
0, and by Taylor expanding, we can conclude that ∂2xu(2, x0) ≤ 0 at the max. Thus,
∂tu(2, x0) − ∂2xu(2, x0) ≥ 0. Using the PDE, we thus conclude that −u(2, x0) ≥ 0, and
we are done.

For the final case, we assume that 0 < t0 < 2 and x0 ∈ (0, 1). Then by standard calculus,
∂tu(t0, x0) = 0 at the max. Also, as above, by standard calculus ∂2xu(t0, x0) ≤ 0 at the max.
Thus, ∂tu(t0, x0) − ∂2xu(t0, x0) ≥ 0. Using the PDE, we thus conclude that −u(t0, x0) ≥ 0,
and we are again done.

IV. a)
Using the PDE and the fundamental theorem of calculus, we compute that

d
(14) T (t) =

∫
∂tu(t, x) dx =

∫
∂2xu(t, x) dx = ∂xu(t, y)|y=1

y=0 = ∂xu(t, 1) ∂
dt [0, [0,1]

− xu(t, 0) = 0.
1]

b) (2 pts.)
Our previous studies of the heat equation have suggested that solutions to the heat equa-

tion tend to rapidly settle down to constant states as t → ∞. Since the thermal energy is
preserved in time, if u converges to a constant C, then it must be the case that
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(15) C =

∫
C dy =

∫
lim u(t, y) dy = lim

∫
u(t, y) dy = lim

t→∞ t[0,1] [0 1] →∞ t, [0,1] →∞
T (t) = lim

t→∞
T (0) = T (0).

def T
∫ def

c) Define C = (0) = f(x) dx. Also define w(x) = u(t, x)
[0,1]

− C. Note that part a)

implies that

(16)

∫
w(t, x) dx = 0

[0,1]

for all t.
Then we compute that

(17) ∂tw − ∂2xw = 0, (t, x) ∈ [0,∞)× [0, 1],

w(0, x) = f(x)− C, x ∈ [0, 1],

∂xw(t, 0) = 0, ∂xw(t, 1) = 0, t ∈ [0,∞).

Define the energy

def
(18) E2(t) =

∫
w2(t, x) dx.

[0,1]

Using (17) and the boundary conditions, we compute that

d
(19) E2(t) = 2

∫
w(t, x)∂tw(t, x) dx = 2

dt [0,1]

∫
w(t, x)∂2xw(t, x) dx =

[0,1]

−2

∫
(∂xw(t, x))2 dx.

[0,1]

Now (16) implies that at each fixed t, there must exist a spatial point x0 such that
w(t, x0) = 0; otherwise, w(t, ·) would be strictly positive or negative in x, and therefore
(16) could not hold. Using the fundamental theorem of calculus and the Cauchy-Schwarz
inequality, we thus estimate that

x

(20) |w(t, x)| = |w(t, x)− w(t, x0)| =
∣∣∫∣∣ ∂yw(t, y) dy
x0

∣∣∣
≤

∣∫ 1

0

|∂yw(t, y)| dy(∫ 1 )1/2( /

≤ 12 dy

∫ 1 1 2

|∂yw(t, y)|2 dy( 0 0

)
=

∫ 1 1/2

|∂ w(t, y)|2y dy
0

)
.

It thus follows from (20) that

E2 def
(t) =

∫ 1

(21) |w(t, x)|2 dx ≤ max |w(t, x)|2 ≤
∫
|∂yw(t, y)

x∈[0,1],1] 0

|2 dy.
[0
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Combining (19) and (21), we have that

d
(22) E2(t)

dt
≤ −2E2(t).

Integrating (21), we conclude that

(23) E2(t) ≤ E2(0)e−2t,

and so limt E2(t) = 0. Thus,→∞

(24) lim

∫
|u(t, x)− C 2

t→∞ [0 1]

| dx = 0.
,

Equivalently,

(25) ‖u(t, ·)− C‖L2([0,1]) → 0

as t→∞. That is, u(t, ·) converges to C in the spatial L2([0, 1]) norm as t→∞.
V. a)

Using the PDE, integrating by parts in x, and using the spatial compact support of the
solution to discard the boundary terms, we compute that

d
(26) E2 =

∫
∂t

{
(∂ 2 2
tu) + (∂xu)

dt R

}
dx

= 2

∫
(∂tu)∂2t u+ ∂xu∂t∂xu dx = 2

∫
(∂tu)(∂2xu− F) + (∂xu)∂t∂xu dx

R R

= −2

∫
(∂tu)F dx+ 2

∫
(∂tu)∂2xu+ (∂xu)∂t∂xu dx

R R

= −2

∫
(∂tu)F dx+ 2

∫
−∂x(∂tu)∂xu+ (∂xu)∂t∂xu dx

R

= −2

∫R
(∂tu)F dx.

R

b)
Using (26) and Cauchy-Schwarz, we compute that

d (∫ )1/2
(27) E2 ≤ 2 t

R
|∂ u

dt
|2 dx

1/2

(∫
2 dx

)1/2
|F

≤ 2E
(∫ R

|

R
|F|2 dx

2

)
≤ E .

1 + t2

But the left-hand side of (27) is equal to 2E d E, which leads to
dt
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d 1
(28) E

dt
≤ .

1 + t2

Integrating (28) in time, we conclude that

t

(29) E(t) E(0) =

∫
d t 1− E(s) ds

0 ds
≤
∫

ds
0 1 + s2

≤
∫ ∞ 1

ds
0 1 + s2

def
= C <∞,

and we have reached the desired conclusion.
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