MATH 18.152 - MIDTERM EXAM

18.152 Introduction to PDEs, Fall 2011

Midterm Exam Solutions, Thursday, October 27

I. a) Setting

$$
\begin{equation*}
u(t, x)=v(t) w(x) \tag{1}
\end{equation*}
$$

leads to the ODEs

$$
\begin{equation*}
\frac{v^{\prime}(t)}{v(t)}=\frac{w^{\prime \prime}(x)}{-w(x)}=\lambda \in \mathbb{R} \tag{2}
\end{equation*}
$$

The solutions to (2) that satisfy the boundary conditions are

$$
\begin{align*}
v(t) & =A e^{\lambda t} \tag{3}\\
w(x) & =B \sin (\sqrt{|\lambda|} x) \tag{4}
\end{align*}
$$

where A, B are constants,

$$
\begin{equation*}
\lambda=m^{2} \pi^{2} \tag{5}
\end{equation*}
$$

and $m \geq 0$ is an integer. Thus, we have derived an infinite family of solutions

$$
u_{m}(t, x) \stackrel{\text { def }}{=} A_{m} e^{m^{2} \pi^{2} t} \sin (m \pi x)
$$

b) For a general $f(x)$, the solution to the PDE is a superposition

$$
\begin{align*}
u(t, x) & =\sum_{m=1}^{\infty} A_{m} e^{m^{2} \pi^{2} t} \sin (m \pi x) \tag{7}\\
A_{m} & =2 \int_{[0,1]} f(x) \sin (m \pi x) d x \tag{8}
\end{align*}
$$

Let $n>0$ be any integer, and consider the initial datum $f(x)=\epsilon \sin (n \pi x)$, where $\epsilon>0$ is a small number. Then this function satisfies $\max _{x \in[0,1]}|f(x)| \leq \epsilon, A_{m}=\epsilon$ if $m=n$, and $A_{m}=0$ otherwise. Thus, the corresponding solution is

$$
\begin{equation*}
u(t, x)=\epsilon e^{n^{2} \pi^{2} t} \sin (n \pi x) \tag{9}
\end{equation*}
$$

At time $t=1$, the amplitude of this solution has grown to $\epsilon e^{n^{2} \pi^{2}}$. Thus, by choosing n to be large, at $t=1$, the solution can be arbitrarily large, even though the datum satisfies $\max _{x \in[0,1]}|f(x)| \leq \epsilon$.

In contrast, when $f=0$, the solution remains 0 for all time. Thus, arbitrarily small changes in the data can lead to arbitrarily large changes in the solution, and the backwards heat equation is therefore not well posed (i.e. it is ill-posed). This is in complete contrast to the ordinary heat equation, which is well-posed. For the ordinary heat equation, the Fourier modes exponentially decay in time (as opposed to the exponential growth from (9)).
II. Define $v(x)=u(x)+\sqrt{R}$. Then $\Delta v=0$, and $v(x) \geq 0$ for $x \in B_{R}(0)$. Thus by Harnack's inequality

$$
\begin{equation*}
\frac{R(R-|x|)}{(R+|x|)^{2}} v(0) \leq v(x) \leq \frac{R(R+|x|)}{(R-|x|)^{2}} v(0) \tag{10}
\end{equation*}
$$

holds for $x \in B_{R}(0)$. Thus, for $x \in B_{R}(0)$, we have

$$
\left\{\frac{R(R-|x|)}{(R+|x|)^{2}}-1\right\} \sqrt{R} \leq u(x) \leq\left\{\frac{R(R+|x|)}{(R-|x|)^{2}}-1\right\} \sqrt{R} .
$$

For a fixed x, we let $R \rightarrow \infty$ and apply L'Hôpital's rule to conclude that

$$
\begin{equation*}
0 \leq u(x) \leq 0 \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
u(x)=0 . \tag{13}
\end{equation*}
$$

III. Let $\left(t_{0}, x_{0}\right)$ be the point in $[0,2] \times[0,1]$ at which u achieves its max. We will show that $u\left(t_{0}, x_{0}\right) \leq 0$, which implies the desired conclusion.

If $t_{0}=0, x_{0}=0$, or $x_{0}=1$, then the conditions on f, g, h immediately imply that $u\left(t_{0}, x_{0}\right) \leq 0$, and we are done. So let us assume that none of these cases occur.

If $t_{0}=2$, then by the above remarks we can assume that $x_{0} \in(0,1)$. Then $\partial_{t} u\left(2, x_{0}\right) \geq 0$, since otherwise we could slightly decrease t_{0} and cause the value of u to increase, which contradicts the definition of a max. Also, by standard calculus, we must have that $\partial_{x} u\left(2, x_{0}\right)=$ 0 , and by Taylor expanding, we can conclude that $\partial_{x}^{2} u\left(2, x_{0}\right) \leq 0$ at the max. Thus, $\partial_{t} u\left(2, x_{0}\right)-\partial_{x}^{2} u\left(2, x_{0}\right) \geq 0$. Using the PDE, we thus conclude that $-u\left(2, x_{0}\right) \geq 0$, and we are done.

For the final case, we assume that $0<t_{0}<2$ and $x_{0} \in(0,1)$. Then by standard calculus, $\partial_{t} u\left(t_{0}, x_{0}\right)=0$ at the max. Also, as above, by standard calculus $\partial_{x}^{2} u\left(t_{0}, x_{0}\right) \leq 0$ at the max. Thus, $\partial_{t} u\left(t_{0}, x_{0}\right)-\partial_{x}^{2} u\left(t_{0}, x_{0}\right) \geq 0$. Using the PDE, we thus conclude that $-u\left(t_{0}, x_{0}\right) \geq 0$, and we are again done.
IV. a)

Using the PDE and the fundamental theorem of calculus, we compute that

$$
\begin{equation*}
\frac{d}{d t} \mathcal{T}(t)=\int_{[0,1]} \partial_{t} u(t, x) d x=\int_{[0,1]} \partial_{x}^{2} u(t, x) d x=\left.\partial_{x} u(t, y)\right|_{y=0} ^{y=1}=\partial_{x} u(t, 1)-\partial_{x} u(t, 0)=0 \tag{14}
\end{equation*}
$$

b) (2 pts.)

Our previous studies of the heat equation have suggested that solutions to the heat equation tend to rapidly settle down to constant states as $t \rightarrow \infty$. Since the thermal energy is preserved in time, if u converges to a constant C, then it must be the case that
$C=\int_{[0,1]} C d y=\int_{[0,1]} \lim _{t \rightarrow \infty} u(t, y) d y=\lim _{t \rightarrow \infty} \int_{[0,1]} u(t, y) d y=\lim _{t \rightarrow \infty} \mathcal{T}(t)=\lim _{t \rightarrow \infty} \mathcal{T}(0)=\mathcal{T}(0)$.
c) Define $C \stackrel{\text { def }}{=} \mathcal{T}(0)=\int_{[0,1]} f(x) d x$. Also define $w(x) \stackrel{\text { def }}{=} u(t, x)-C$. Note that part a) implies that

$$
\begin{equation*}
\int_{[0,1]} w(t, x) d x=0 \tag{16}
\end{equation*}
$$

for all t.
Then we compute that

$$
\begin{align*}
\partial_{t} w-\partial_{x}^{2} w & =0, \quad(t, x) \in[0, \infty) \times[0,1] \tag{17}\\
w(0, x) & =f(x)-C, \quad x \in[0,1] \\
\partial_{x} w(t, 0) & =0, \quad \partial_{x} w(t, 1)=0, \quad t \in[0, \infty)
\end{align*}
$$

Define the energy

$$
\begin{equation*}
E^{2}(t) \stackrel{\text { def }}{=} \int_{[0,1]} w^{2}(t, x) d x \tag{18}
\end{equation*}
$$

Using (17) and the boundary conditions, we compute that

$$
\begin{equation*}
\frac{d}{d t} E^{2}(t)=2 \int_{[0,1]} w(t, x) \partial_{t} w(t, x) d x=2 \int_{[0,1]} w(t, x) \partial_{x}^{2} w(t, x) d x=-2 \int_{[0,1]}\left(\partial_{x} w(t, x)\right)^{2} d x \tag{19}
\end{equation*}
$$

Now (16) implies that at each fixed t, there must exist a spatial point x_{0} such that $w\left(t, x_{0}\right)=0$; otherwise, $w(t, \cdot)$ would be strictly positive or negative in x, and therefore (16) could not hold. Using the fundamental theorem of calculus and the Cauchy-Schwarz inequality, we thus estimate that

$$
\begin{aligned}
|w(t, x)|=\left|w(t, x)-w\left(t, x_{0}\right)\right| & =\left|\int_{x_{0}}^{x} \partial_{y} w(t, y) d y\right| \\
& \leq \int_{0}^{1}\left|\partial_{y} w(t, y)\right| d y \\
& \leq\left(\int_{0}^{1} 1^{2} d y\right)^{1 / 2}\left(\int_{0}^{1}\left|\partial_{y} w(t, y)\right|^{2} d y\right)^{1 / 2} \\
& =\left(\int_{0}^{1}\left|\partial_{y} w(t, y)\right|^{2} d y\right)^{1 / 2}
\end{aligned}
$$

It thus follows from (20) that

$$
\begin{equation*}
E^{2}(t) \stackrel{\text { def }}{=} \int_{[0,1]}|w(t, x)|^{2} d x \leq \max _{x \in[0,1]}|w(t, x)|^{2} \leq \int_{0}^{1}\left|\partial_{y} w(t, y)\right|^{2} d y \tag{21}
\end{equation*}
$$

Combining (19) and (21), we have that

$$
\begin{equation*}
\frac{d}{d t} E^{2}(t) \leq-2 E^{2}(t) \tag{22}
\end{equation*}
$$

Integrating (21), we conclude that

$$
E^{2}(t) \leq E^{2}(0) e^{-2 t}
$$

and so $\lim _{t \rightarrow \infty} E^{2}(t)=0$. Thus,

$$
\lim _{t \rightarrow \infty} \int_{[0,1]}|u(t, x)-C|^{2} d x=0
$$

Equivalently,

$$
\begin{equation*}
\|u(t, \cdot)-C\|_{L^{2}([0,1])} \rightarrow 0 \tag{25}
\end{equation*}
$$

as $t \rightarrow \infty$. That is, $u(t, \cdot)$ converges to C in the spatial $L^{2}([0,1])$ norm as $t \rightarrow \infty$.
V. a)

Using the PDE, integrating by parts in x, and using the spatial compact support of the solution to discard the boundary terms, we compute that

$$
\begin{aligned}
\frac{d}{d t} E^{2} & =\int_{\mathbb{R}} \partial_{t}\left\{\left(\partial_{t} u\right)^{2}+\left(\partial_{x} u\right)^{2}\right\} d x \\
& =2 \int_{\mathbb{R}}\left(\partial_{t} u\right) \partial_{t}^{2} u+\partial_{x} u \partial_{t} \partial_{x} u d x=2 \int_{\mathbb{R}}\left(\partial_{t} u\right)\left(\partial_{x}^{2} u-\mathfrak{F}\right)+\left(\partial_{x} u\right) \partial_{t} \partial_{x} u d x \\
& =-2 \int_{\mathbb{R}}\left(\partial_{t} u\right) \mathfrak{F} d x+2 \int_{\mathbb{R}}\left(\partial_{t} u\right) \partial_{x}^{2} u+\left(\partial_{x} u\right) \partial_{t} \partial_{x} u d x \\
& =-2 \int_{\mathbb{R}}\left(\partial_{t} u\right) \mathfrak{F} d x+2 \int_{\mathbb{R}}-\partial_{x}\left(\partial_{t} u\right) \partial_{x} u+\left(\partial_{x} u\right) \partial_{t} \partial_{x} u d x \\
& =-2 \int_{\mathbb{R}}\left(\partial_{t} u\right) \mathfrak{F} d x
\end{aligned}
$$

b)

Using (26) and Cauchy-Schwarz, we compute that

$$
\begin{align*}
\frac{d}{d t} E^{2} & \leq 2\left(\int_{\mathbb{R}}\left|\partial_{t} u\right|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}}|\mathfrak{F}|^{2} d x\right)^{1 / 2} \tag{27}\\
& \leq 2 E\left(\int_{\mathbb{R}}|\mathfrak{F}|^{2} d x\right)^{1 / 2} \\
& \leq E \frac{2}{1+t^{2}}
\end{align*}
$$

But the left-hand side of (27) is equal to $2 E \frac{d}{d t} E$, which leads to

$$
\begin{equation*}
\frac{d}{d t} E \leq \frac{1}{1+t^{2}} \tag{28}
\end{equation*}
$$

Integrating (28) in time, we conclude that

$$
\begin{align*}
E(t)-E(0) & =\int_{0}^{t} \frac{d}{d s} E(s) d s \leq \int_{0}^{t} \frac{1}{1+s^{2}} d s \tag{29}\\
& \leq \int_{0}^{\infty} \frac{1}{1+s^{2}} d s \\
& \stackrel{\text { def }}{=} C<\infty,
\end{align*}
$$

and we have reached the desired conclusion.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

