MATH 18.152-PROBLEM SET 6

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Problem Set 6, Due: at the start of class on 10-20-11

I. Consider the global Cauchy problem for the wave equation in \mathbb{R}^{1+n} :

$$
\begin{align*}
-\partial_{t}^{2} u(t, x)+\Delta u(t, x) & =0, \quad(t, x) \in[0, \infty) \times \mathbb{R}^{n}, \tag{0.0.1a}\\
u(0, x) & =f(x) \tag{0.0.1b}\\
\partial_{t} u(0, x) & =g(x) \tag{0.0.1c}
\end{align*}
$$

Let the vectorfield $\mathbf{J}(t, x)$ on \mathbb{R}^{1+n} be defined as follows:

$$
\begin{equation*}
\mathbf{J}=\left(J^{0}, J^{1}, \cdots, J^{n}\right) \stackrel{\text { def }}{=}\left(\frac{1}{2}\left(\partial_{t} u\right)^{2}+\frac{1}{2}|\nabla u|^{2},-\partial_{1} u \partial_{t} u,-\partial_{2} u \partial_{t} u, \cdots,-\partial_{n} u \partial_{t} u\right) . \tag{0.0.2}
\end{equation*}
$$

Above, $x=\left(x^{1}, \cdots, x^{n}\right)$ denotes coordinates on $\mathbb{R}^{n}, \nabla u \stackrel{\text { def }}{=}\left(\partial_{1} u, \cdots, \partial_{n} u\right)$ is the spatial gradient of u, and $|\nabla u|^{2} \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(\partial_{i} u\right)^{2}$ is the square of its Euclidean length.
a) First show that

$$
\begin{equation*}
\partial_{t} J^{0}+\sum_{i=1}^{n} \partial_{i} J^{i}=0 \tag{0.0.3}
\end{equation*}
$$

whenever u is a C^{2} solution to (0.0.1a).
b) Then show that if $\mathbf{V}=\left(V^{0}, V^{1}, \cdots, V^{n}\right)=\left(1, \omega^{1}, \omega^{2}, \cdots, \omega^{n}\right) \in \mathbb{R}^{1+n}$ is any vector with $\sum_{i=1}^{n}\left(\omega_{i}\right)^{2} \leq 1$, then

$$
\begin{equation*}
\mathbf{V} \cdot \mathbf{J} \stackrel{\text { def }}{=} \sum_{\mu=0}^{n} J^{\mu} V^{\mu} \geq 0 \tag{0.0.4}
\end{equation*}
$$

Hint: To get started, try using the Cauchy-Schwarz inequality for dot products.
II. Assume that $0 \leq t \leq R$, and let $p \in \mathbb{R}^{n}$ be a fixed point. Let $\mathcal{C}_{t, p ; R} \stackrel{\text { def }}{=}\{(\tau, y) \in[0, t) \times$ $\left.\mathbb{R}^{n}| | y-p \mid \leq R-\tau\right\} \subset \mathbb{R}^{1+n}$ be a solid, truncated backwards light cone. Note that the boundary of the cone consists of 3 pieces: $\partial \mathcal{C}_{t, p ; R}=\mathcal{B} \cup \mathcal{M}_{t, p ; R} \cup \mathcal{T}$, where $\mathcal{B} \stackrel{\text { def }}{=}\{0\} \times B_{R}(p)$ is the flat base of the truncated cone, $\mathcal{T} \stackrel{\text { def }}{=}\{t\} \times B_{R-t}(p)$ is the flat top of the truncated cone, and $\mathcal{M}_{t, p ; R} \stackrel{\text { def }}{=}\left\{(\tau, y) \in[0, t) \times \mathbb{R}^{n}| | y-p \mid=R-\tau\right\}$ is the mantle (i.e., the side boundary) of the truncated cone.

Define the energy of a function u at time t on the solid ball $B_{R-t}(p)$ by

$$
\begin{equation*}
E^{2}(t ; R ; p) \stackrel{\text { def }}{=} \int_{B_{R-t}(p)} J^{0}(t, x) d^{n} x \stackrel{\text { def }}{=} \frac{1}{2} \int_{B_{R-t}(p)}\left(\partial_{t} u\right)^{2}+|\nabla u|^{2} d^{n} x \tag{0.0.5}
\end{equation*}
$$

and recall that the divergence theorem in \mathbb{R}^{1+n} implies that

$$
\begin{equation*}
\int_{\mathcal{C}_{t, p ; R}}\left(\partial_{t} J^{0}+\sum_{i=1}^{n} \partial_{i} J^{i}\right) d^{n} x d t=\int_{\mathcal{M}_{t, p ; R}} \mathbf{N}(\sigma) \cdot \mathbf{J} d \sigma-\underbrace{\int_{B_{R}(p)} J^{0} d^{n} x}_{E^{2}(0 ; R ; p)}+\underbrace{\int_{B_{R-t}(p)} J^{0} d^{n} x}_{E^{2}(t ; R ; p)} \tag{0.0.6}
\end{equation*}
$$

In (0.0.6), $\mathbf{N}(\sigma)$ is the unit outward normal to $\mathcal{M}_{t, p ; R}$.
Remark 0.0.1. In the near future, we will discuss the geometry of Minkowski spacetime, which is intimately connected to the linear wave equation. Our study will lead to a geometrically motivated construction of the vectorfield \mathbf{J} and the identity (0.0.6). Alternatively, the identity (0.0.6) could also be derived by multiplying both sides of equation (0.0.1a) by $-\partial_{t} u$, then integrating by parts and using the divergence theorem.
a) Show that the unit outward normal $\mathbf{N}(\sigma)$ to $\mathcal{M}_{t, p ; R}$ is of the form

$$
\begin{equation*}
\mathbf{N}(\sigma)=\frac{1}{\sqrt{2}}\left(1, \omega^{1}(\sigma), \omega^{2}(\sigma), \cdots, \omega^{n}(\sigma)\right) \tag{0.0.7}
\end{equation*}
$$

where $\sum_{i=1}^{n}\left(\omega^{i}\right)^{2}=1$. Note that by translational invariance, you may assume that $p=0$.
b) With the help of Problem I and (0.0.6) - (0.0.7), show that if u is a C^{2} solution to (0.0.1a), then

$$
\begin{equation*}
E^{2}(t ; R ; p) \leq E^{2}(0 ; R ; p) \tag{0.0.8}
\end{equation*}
$$

holds for all t with $0 \leq t \leq R$.
c) Then show that if the functions $f(x)$ and $g(x)$ from (0.0.1b) - (0.0.1c) are both smooth and vanish outside of the ball $B_{R_{0}}(p) \subset \mathbb{R}^{n}$, then at each time $t \geq 0$, the solution $u(t, x)$ to (0.0.1a) vanishes outside of the ball $B_{R_{0}+t}(p)$.
d) Finally, under the same assumptions on f and g, let $R \rightarrow \infty$ in (0.0.8) (and also use additional arguments) to show that the solution u to (0.0.1a) satisfies

$$
\begin{equation*}
\left\|\left|\nabla_{t, x} u(t, \cdot)\right|\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|\left|\nabla_{t, x} u(0, \cdot)\right|\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \stackrel{\text { def }}{=}\left(\int_{\mathbb{R}^{n}}|g(x)|^{2}+|\nabla f(x)|^{2} d^{n} x\right)^{1 / 2} \tag{0.0.9}
\end{equation*}
$$

where $\nabla_{t, x} u=\left(\partial_{t} u, \partial_{1}, \cdots, \partial_{n} u\right)$ is the spacetime gradient of $u,\left|\nabla_{t, x} u\right| \stackrel{\text { def }}{=} \sqrt{\left(\partial_{t} u\right)^{2}+\left(\partial_{1} u\right)^{2}+\cdots\left(\partial_{n} u\right)^{2}}$, and the L^{2} norms in (0.0.9) are taken over the spatial variables only.
III. Let $R>0$, and let $f(x), g(x)$ be smooth functions on \mathbb{R} that vanish outside of $B_{R}(0) \stackrel{\text { def }}{=}$ $[-R, R]$. Let $u(t, x)$ be the corresponding unique solution to the following global Cauchy problem on \mathbb{R}^{1+1} :

$$
\begin{align*}
-\partial_{t}^{2} u(t, x)+\partial_{x}^{2} u(t, x) & =0 \tag{0.0.10a}\\
u(0, x) & =f(x) \tag{0.0.10b}\\
\partial_{t} u(0, x) & =g(x) \tag{0.0.10c}
\end{align*}
$$

We define the following quantities:

$$
\begin{align*}
& P^{2}(t) \stackrel{\text { def }}{=} \int_{\mathbb{R}}\left(\partial_{x} u(t, x)\right)^{2} d x, \quad \text { the potential energy } \tag{0.0.11a}\\
& K^{2}(t) \stackrel{\text { def }}{=} \int_{\mathbb{R}}\left(\partial_{t} u(t, x)\right)^{2} d x, \quad \text { the kinetic energy } \tag{0.0.11b}\\
& E^{2}(t) \stackrel{\text { def }}{=} P^{2}(t)+K^{2}(t), \quad \text { the total energy. } \tag{0.0.11c}
\end{align*}
$$

In Problem II, you used energy methods to prove that $E(t)$ is conserved: $E(t)=E(0)$ for all $t \geq 0$. Now show that if t is large enough, then $P^{2}(t)=K^{2}(t)=\frac{1}{2} E^{2}(t)$. This is called the equipartitioning of the energy.
Hint: Try expressing $P(t)$ and $K(t)$ in terms of the null derivatives $\partial_{q} u(t, x)$ and $\partial_{s} u(t, x)$ that we used in the proof of d'Alembert's formula. If you set up the calculations properly, then the desired equipartitioning result should boil down to proving that $\int_{\mathbb{R}}\left(\partial_{q} u(t, x)\right)\left(\partial_{s} u(t, x)\right) d x=$ 0 for all large t. In order to prove this latter result, take a close look at the the expressions for $\partial_{q} u(t, x)$ and $\partial_{s} u(t, x)$ that we derived in terms of f, g during that proof, and make use of the assumptions on f, g.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

