
MATH 18.152 - PROBLEM SET 6

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Problem Set 6, Due: at the start of class on 10-20-11

I. Consider the global Cauchy problem for the wave equation in R1+n :

(0.0.1a) −∂2t u(t, x) + ∆u(t, x) = 0, (t, x) ∈ [0,∞)× Rn,

(0.0.1b) u(0, x) = f(x),

(0.0.1c) ∂tu(0, x) = g(x).

Let the vectorfield J(t, x) on R1+n be defined as follows:

J = (J0, J1 1 1
(0.0.2) , · · · n def

, J ) =
(

(∂ u)2 + |∇u|2t ,−∂1u∂tu,−∂2u∂tu,
2 2

· · · ,−∂nu∂tu .

def
Above, x = (x1, · · · , xn) denotes coordinates on Rn∑ , ∇u = (∂1u, · · · , ∂

)
nu) is the spatial

gradient of u, and |∇u| def2 = n 2
i=1(∂iu) is the square of its Euclidean length.

a) First show that

n

(0.0.3) ∂ 0 i
tJ + ∂iJ = 0

i=1

whenever u is a C2 solution to (0.0.1a).

∑

b)∑ Then show that if V = (V 0, V 1,
n 2

· · · , V n) = (1, ω1, ω2, · · · , ωn) ∈ R1+n is any vector with

i=1(ωi) ≤ 1, then

n

V · def
(0.0.4) J = JµV µ

µ=0

≥ 0.

Hint: To get started, try using the Cauc

∑
hy-Schwarz inequality for dot products.

≤ ≤ ∈ R def
II. Assume that 0 t R, and let p n be a fixed point. Let Ct,p;R = {(τ, y) ∈ [0, t)

n 1+n
×

R | |y − p| ≤ R − τ} ⊂ R be a solid, truncated backwards light cone. Note that the
def

boundary of the cone consists of 3 pieces: ∂Ct,p;R = B ∪Mt,p;R ∪T , where B =
def

{0}×BR(p)

is the flat base of the truncated cone, T = {t
def

} × BR−t(p) is the flat top of the truncated

cone, and M n
t,p;R = {(τ, y) ∈ [0, t) × R | |y − p| = R − τ} is the mantle (i.e., the side

boundary) of the truncated cone.
Define the energy of a function u at time t on the solid ball BR (p) by−t

E2 def
(0.0.5) (t;R; p) =

∫
J0 def 1

(t, x) dnx = (
R t(p) 2

∫
∂ 2
tu) + u 2 dnx,

B BR t(p)

|∇ |
− −

1
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and recall that the divergence theorem in R1+n implies that

∫ n

(0.0.6) ∂ 0 i n 0 n 0 n
tJ + ∂iJ d xdt = N(σ) · J dσ − J d x+ J d x .

Ct,p;R

( ∑
i=1

) ∫
Mt,p;R

∫
BR(p)

∫
BR−t(p)

E2(0;R;p) E2(t;R;p)

In (0.0.6), N(σ) is the unit outward normal to Mt,p;R.

︸ ︷︷ ︸ ︸ ︷︷ ︸
Remark 0.0.1. In the near future, we will discuss the geometry of Minkowski spacetime,
which is intimately connected to the linear wave equation. Our study will lead to a geomet-
rically motivated construction of the vectorfield J and the identity (0.0.6). Alternatively,
the identity (0.0.6) could also be derived by multiplying both sides of equation (0.0.1a) by
−∂tu, then integrating by parts and using the divergence theorem.

a) Show that the unit outward normal N(σ) to Mt,p;R is of the form

1
(0.0.7) N(σ) = √

(
1, ω1(σ), ω2(σ),

2
· · · , ωn(σ) ,

where
∑n i 2

i=1(ω ) = 1. Note that by translational invariance,

)
you may assume that p = 0.

b) With the help of Problem I and (0.0.6) - (0.0.7), show that if u is a C2 solution to
(0.0.1a), then

(0.0.8) E2(t;R; p) ≤ E2(0;R; p)

holds for all t with 0 ≤ t ≤ R.

c) Then show that if the functions f(x) and g(x) from (0.0.1b) - (0.0.1c) are both smooth
and vanish outside of the ball BR0(p) ⊂ Rn, then at each time t ≥ 0, the solution u(t, x) to
(0.0.1a) vanishes outside of the ball BR0+t(p).

d) Finally, under the same assumptions on f and g, let R → ∞ in (0.0.8) (and also use
additional arguments) to show that the solution u to (0.0.1a) satisfies

1/2

(0.0.9) ‖|∇t,xu(t, ·)|‖ def
L2(Rn) = ‖|∇t,xu(0, ·)|‖L2(Rn) =

(∫
Rn

|g(x)|2 + |∇f(x)|2 dnx
)

,

where∇ 1 ·
def

t,xu = (∂tu, ∂ , · · , ∂nu) is the spacetime gradient of u, |∇t,xu| = (∂tu)2 + (∂1u)2 + · · · (∂nu)2,
and the L2 norms in (0.0.9) are taken over the spatial variables only.

def
III. Let R > 0, and let f(x), g(x) be smooth functions on

√
R that vanish outside of BR(0) =

[−R,R]. Let u(t, x) be the corresponding unique solution to the following global Cauchy
problem on R1+1 :

(0.0.10a) −∂2t u(t, x) + ∂2xu(t, x) = 0,

(0.0.10b) u(0, x) = f(x),

(0.0.10c) ∂tu(0, x) = g(x).

We define the following quantities:
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P 2 def 2
(0.0.11a) (t) = ∂xu(t, x) dx, the potential energy

R

2 def

∫
(0.0.11b) K (t) =

( )
∫ (

∂tu(t, x)
)2
dx, the kinetic energy

R
def

(0.0.11c) E2(t) = P 2(t) +K2(t), the total energy.

In Problem II, you used energy methods to prove that E(t) is conserved: E(t) = E(0) for
all t ≥ 0. Now show that if t is large enough, then P 2(t) = K2(t) = 1E2(t). This is called

2
the equipartitioning of the energy.
Hint: Try expressing P (t) and K(t) in terms of the null derivatives ∂qu(t, x) and ∂su(t, x)
that we used in the proof of d’Alembert’s formula. If you set up the calculations properly,
then the desired equipartitioning result should boil down to proving that

∫
(∂qu(t, x))(∂su(t, x)) dx =R

0 for all large t. In order to prove this latter result, take a close look at the the expressions
for ∂qu(t, x) and ∂su(t, x) that we derived in terms of f, g during that proof, and make use
of the assumptions on f, g.
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