MATH 18.152-PROBLEM SET 4

18.152 Introduction to PDEs, Fall 2011

Problem Set 4, Due: at the start of class on 10-6-11

I. Problem 3.1 on pg. 150.
II. Problem 3.2 on pg. 150.
III. Problem 3.3 on pg. 151. You may assume that $u \in C^{3}(\Omega) \cap C^{1}(\bar{\Omega})$.
IV. Problem 3.4 on pg. 151.
V. Problem 3.8 on pg. 152.
VI. Let $B_{1}(0)$ denote the solid unit ball in \mathbb{R}^{n}, and let $\partial B_{1}(0)$ denote its boundary. Let $f(x)$ be smooth (i.e., infinitely differentiable) function on $B_{1}(0)$, let $g(\sigma)$ be a smooth function on $\partial B_{1}(0)$, and let $u(x)$ be a smooth solution to

$$
\begin{aligned}
\Delta u(x) & =f(x), & & x \in B_{1}(0), \\
u(\sigma) & =g(\sigma), & & \sigma \in \partial B_{1}(0) .
\end{aligned}
$$

Show that there exists a constant $C>0$ which does not depend on f or g such that

$$
\max _{x \in B_{1}(0)}|u(x)| \leq C\left(\max _{x \in B_{1}(0)}|f(x)|+\max _{\sigma \in \partial B_{1}(0)}|g(\sigma)|\right) .
$$

If you prefer, you can supply a proof for the case $n=3$ only (the remaining cases are similar).
Hint: Revisit the proof of the Mean value properties discussed in class.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

