MATH 18.152-PROBLEM SET 9

18.152 Introduction to PDEs, Fall 2011

Problem Set 9, Due: at the start of class on 11-17-11

I. Classify the following PDEs as elliptic, hyperbolic, or parabolic.
a)

$$
\begin{equation*}
\partial_{t}^{2} u+\partial_{t} \partial_{x} u+\partial_{x}^{2} u=0 \tag{0.0.1}
\end{equation*}
$$

b)

$$
\begin{equation*}
\partial_{t}^{2} u+2 \partial_{t} \partial_{x} u+\partial_{x}^{2} u=0 \tag{0.0.2}
\end{equation*}
$$

c)

$$
\begin{equation*}
2 \partial_{t}^{2} u-\partial_{t} \partial_{x} u-12 \partial_{x}^{2} u=0 \tag{0.0.3}
\end{equation*}
$$

II. Consider the function sinc $: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{sinc}(x) \stackrel{\text { def }}{=} \begin{cases}\frac{\sin \pi x}{\pi x}, & x \neq 0, \tag{0.0.4}\\ 1, & x=0\end{cases}
$$

a) Show that $\operatorname{sinc}(x)$ is infinitely differentiable at all points $x \in \mathbb{R}$.

Hint: Taylor series.
b) Let $a>0$ be a constant, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x) \stackrel{\text { def }}{=} \begin{cases}1, & |x| \leq a \tag{0.0.5}\\ 0, & |x|>a\end{cases}
$$

f is sometimes referred to as the characteristic function of the interval $[-a, a]$. Show that

$$
\begin{equation*}
\hat{f}(\xi)=2 a \operatorname{sinc}(2 a \xi) \tag{0.0.6}
\end{equation*}
$$

III. Let $C_{0}(\mathbb{R})$ denote the set of all continuous function $u: \mathbb{R} \rightarrow \mathbb{C}$ such that $\lim _{x \rightarrow \pm \infty} u(x)=0$.

Let $\|\cdot\|_{C_{0}}$ be the norm on $C_{0}(\mathbb{R})$ defined by $\|u\|_{C_{0}} \stackrel{\text { def }}{=} \max _{x \in \mathbb{R}}|u(x)|$. Let $\left\{u_{j}\right\}_{j=1}^{\infty}$ be a sequence of functions such that $u_{j} \in C_{0}(\mathbb{R})$ for $1 \leq j$, and let $u: \mathbb{R} \rightarrow \mathbb{C}$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{C_{0}}=0 \tag{0.0.7}
\end{equation*}
$$

From standard real analysis, it follows that u is a continuous function since it is the uniform limit of continuous functions. Show that in addition, we have $u \in C_{0}(\mathbb{R})$, i.e. that $\lim _{x \rightarrow \pm \infty} u(x)=0$.
IV. Let $R>0$ be a real number, and let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a complex-valued, continuous function that vanishes when $|x| \geq R$. For each $y \in \mathbb{R}$, let $\tau_{y} f$ be the translate of f by y, i.e.,

$$
\begin{equation*}
\tau_{y} f(x) \stackrel{\text { def }}{=} f(x-y) \tag{0.0.8}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\lim _{y \rightarrow 0}\left\|\tau_{y} f-f\right\|_{L^{1}} \stackrel{\text { def }}{=} \lim _{y \rightarrow 0} \int_{\mathbb{R}}|f(x-y)-f(x)| d x=0 \tag{0.0.9}
\end{equation*}
$$

Hint: Use the fact that f is uniformly continuous on all of \mathbb{R} and that for all small y, the integrand in (0.0.9) vanishes outside of fixed compact set of x values.
V. Let $R>0$ be a real number, and let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a complex-valued, continuous function that vanishes when $|x| \geq R$. For any $t>0$, define the function f_{t} by

$$
\begin{equation*}
f_{t}(x) \stackrel{\text { def }}{=}(\Gamma(t, \cdot) * f(\cdot))(x) \tag{0.0.10}
\end{equation*}
$$

where $*$ denotes convolution, and

$$
\begin{equation*}
\Gamma(t, x) \stackrel{\text { def }}{=} \frac{1}{\sqrt{4 \pi t}} e^{-x^{2} /(4 t)} \tag{0.0.11}
\end{equation*}
$$

is the fundamental solution to the heat equation with diffusion constant $D=1$.
Show that

$$
\begin{equation*}
\lim _{t \downarrow 0}\left\|f_{t}-f\right\|_{L^{1}}=0 \tag{0.0.12}
\end{equation*}
$$

Hint: Using the fact that $\int_{\mathbb{R}} \Gamma(t, y) d y=1$ for all $t>0$, it is easy to see that (0.0.12) is equivalent to proving that

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{\mathbb{R}}\left|\int_{\mathbb{R}} \Gamma(t, y)\{f(x-y)-f(x)\} d y\right| d x=0 \tag{0.0.13}
\end{equation*}
$$

With the help of Fubini's theorem, to prove (0.0.13), it suffices to show that

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{\mathbb{R}}|\Gamma(t, y)| \int_{\mathbb{R}}|f(x-y)-f(x)| d x d y=0 \tag{0.0.14}
\end{equation*}
$$

To prove (0.0.14), it is helpful to split the y integral into two pieces: one over a small ball $B_{r}(0) \stackrel{\text { def }}{=}\{y| | y \mid \leq r\}$, and the second one over its complement.

To show that the integral

$$
\begin{equation*}
\int_{B_{r}(0)} \Gamma(t, y) \int_{\mathbb{R}}|f(x-y)-f(x)| d x d y \tag{0.0.15}
\end{equation*}
$$

is small for an appropriate choice of r, use the properties of $\Gamma(t, y)$ and Problem IV.

For a fixed r, in order to show that the complementary integral

$$
\begin{equation*}
\int_{\{y| | y \mid \geq r\}} \Gamma(t, y) \int_{\mathbb{R}}|f(x-y)-f(x)| d x d y \tag{0.0.16}
\end{equation*}
$$

is small for sufficiently small t, use the fact that $\Gamma(t, y)$ rapidly decays as a function of y when t is small and the triangle inequality-type estimate $\int_{\mathbb{R}}|f(x-y)-f(x)| d x \leq 2\|f\|_{L^{1}}$ (independently of y).
VI. Let $R>0$ be a real number, and let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a complex-valued, continuous function that vanishes when $|x| \geq R$. For any $t>0$, define

$$
\begin{equation*}
f_{t}(x) \stackrel{\text { def }}{=}(\Gamma(t, \cdot) * f(\cdot))(x) \tag{0.0.17}
\end{equation*}
$$

where $*$ denotes convolution, and

$$
\begin{equation*}
\Gamma(t, x) \stackrel{\text { def }}{=} \frac{1}{\sqrt{4 \pi t}} e^{-x^{2} /(4 t)} \tag{0.0.18}
\end{equation*}
$$

is the fundamental solution to the heat equation with diffusion constant $D=1$.
a) Using the basic properties of the Fourier transform, show that for any $t>0$,

$$
\begin{equation*}
\hat{f}_{t}(\xi)=\hat{f}(\xi) e^{-4 t \pi^{2}|\xi|^{2}} \tag{0.0.19}
\end{equation*}
$$

b) Using the basic properties of the Fourier transform, show that for any $t>0, \hat{f}_{t}$ and \hat{f} are continuous, bounded functions of ξ and that

$$
\begin{equation*}
\left\|\hat{f_{t}}-\hat{f}\right\|_{C_{0}} \leq\left\|f_{t}-f\right\|_{L^{1}(\mathbb{R})} \tag{0.0.20}
\end{equation*}
$$

Above, the norm $\|\cdot\|_{C_{0}}$ is as in Problem III.
c) Using parts a) and \mathbf{b}), show that for any $t>0, \hat{f}_{t} \in C_{0}(\mathbb{R})$, where the function space $C_{0}(\mathbb{R})$ is defined in Problem III.
d) Using part b) and Problem V, show that

$$
\begin{equation*}
\lim _{t \downarrow 0}\left\|\hat{f}_{t}-\hat{f}\right\|_{C_{0}}=0 \tag{0.0.21}
\end{equation*}
$$

e) Using part \mathbf{c}), part d), and Problem III, show that $\hat{f} \in C_{0}(\mathbb{R})$, and therefore (by definition) that

$$
\begin{equation*}
\lim _{\xi \rightarrow \pm \infty} \hat{f}(\xi)=0 \tag{0.0.22}
\end{equation*}
$$

Remark 0.0.1. (0.0.22) is a version of the Riemann-Lebesgue lemma. Written out in full form, it states that

$$
\begin{equation*}
\lim _{\xi \rightarrow \pm \infty} \int_{\mathbb{R}} e^{-2 \pi i \xi x} f(x) d x=0 \tag{0.0.23}
\end{equation*}
$$

With slightly more advanced techniques, the above hypotheses on f can be weakened to only the assumption $f \in L^{1}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

